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The Twelfth Image Understanding Workshop sponsored by the Defence Advanced Research
"Projects Agency (DARPA), Information Processing Techntques Office was held in Washington, D.C. on
April 23, 1981. The Workshop was conducted in conjwr-ttion with the Technical Symposium Kast'81
organized by the Society of Photo-Optical Instruwmntation Engineers (SPIE).

Lt. Col. LArry E. Druffel, the DARPA program manager for Image Understanding, acted
as the Worktshop Chalrean. In his opening remarks, Lt. Col. Druffel noted that he expected an ex-
citing program for this years workshop. He advised the large audience that he was enthused by the
level of technical progress made in the past year by the various research organizations in Lhe
DARPA sponsored program. Also, Druffel indicated that he was pleased with the association with
F1'IF as this provided an opportimity for interchange of ideas between cooperating groups which
could only lead toward Improvements in the ongoing research programs. The SPIE special sessions on
TechnIques and Applications of Image Underst&nding held on Tuesday nad Wednesdey April 21-22,
comeented Druffel, are indicative of the Stowing interest in Image Understanding and the maturing
nature of I.1. science. We believe this to be a,% excellent opportunity, he noted, for researchers
to percieve the potential uses for I.U.; and for a larger audience to become aware o' the current
state-of-the-art.

During the workshop, fifteen technical papers were presented by members of the uni-

versity and industrial organizations Involved in the DARPA sponsored I.U. program. These papers,
and others of currrat interent for which tima was not available for presentation at the workshop,
are contained in Section 1 of these proceedings. In order to reach a titder audience of interested
users and research personnel, many of these papers have beon provided to SPIE for inclusion in their
s'YRIc..i.m proceedings as well as being printed in this DARPA workshop issue. Section II of this vol-
ume contains brief reviews prepared oy the principal investigators involved in the DARPA sponsored
research which, although not presented due to the press ou tim,, are meant to keep the various members
of the group, as well as those government personnel who have been interested in the I.U. program,
abreast of the thrust ot the research efforts being undertaken at each location.

Readers are reLinded that extra copies of these proceedings as well as colies of pre-
vious proceedings may be secured from the Defense Technical Information Center, Cameron Station, H
Alexandria, Virginia 22314. Accession numbers for past editions are as sh~own on following page.

The uaterials for the cover of this document we.re provided by Mr. Bruce Opitz of the
Advanced Technologv Division, Headquarters Defense Mapping Agency. The accompanying description reads:

Imagery is the primary source used by the Defense Mapping Agency (DMA).
Many different kinds of Information any be extracted depending on which
products are required over each area. Currently, this photo-interpre-
tation function is almost totally manual. As the extraction procems be-
comes increasingly automated, MA can begin to extract all possible need-
ed inferat ion over an area, whether it is currently required or not, and
stored in a universal data base. Any produzta tailored to each individual
user'u needs could then be synthesized from this data base.

Mr. Tom Dickerson, Science Applications, Inc. did the layout for the cover design. Appre-
ciation is also dse to Miss Ann Kastris of Science Applications, Inc. for assistance in putting togeth-
er these proceedings and for handling the invitations and mailings necessary to the conduct of the work-
shop. Her valuable assistance in registration and the myriad of other details was almo a sine qua non
for this undertý%king. Finally, our thanks to the Society of Photo-Optical Instrumentation Ingineers for
their cooperation and assistance during the planning and execution of this combined endeavor. We hope
that they are in agreement with us that it has been a valuable experience.

Lne S. Baumann
Science Applications, Inc.
Vorkshop Organiter

ti
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REASONING ABOUT IMAGES:
APPLICATION TO AERIAL IMAGE t'NDERSTANDING

Peter G. Selfridge
Kenneth P. 3loan, Ir.

Department of Computer Science
Univer.ity of Rochester

Rochester. New York 14627

Abstract

Image Understanditog (I.U.) shares with It is a tenet of' this research that a
Artificial Intelligence the need for program to do this must be prepared to use
mechanisms of using knowledge to control partial results, such as partial matches.
computation. In I.U.. this knowledge to change the sequence of operotors and
takes the form cr prior knowledge about their parameters. In doing so, it must be
objects and knowledge gained from doing able to evaluate the results of its
the computations themselves. This paper processing and be prepared to infer, at
presents an approach to the general I.U. several levels, what image conditions are
problem and a speoific program for impeding recognition or the desired
lecating buildings in aerial photcgraphs, objects.
Prior knowledge is stored as an Aljpearance
Model, which represents the appearances of This paper describes a program to
possible buildings. A three stage locate buildings in aerial photographs
program, starting with an Appearance Model using the above approach. The program has
Expert, generates operator and parameter three parts, shown in Figure 1, each of
sequences to achieve recognition. Some which embodies different levels of
operators are Adaptive Operators, which knowledge and inference ability.
hill-climb on a single parameter to
optimize a feature match. Each level uses An AIpearance Model Expert chooses

partial results from below to 1) search 3ubSraph3 of the building Appeurance
paremeteru for the best match, 2) infer Model. A 1A2ion Ueucription is derived
obscuring image conditions and deal with from this sub-model and passed to the
them, and 3) infer high-level conditior~s O erator and Its e Problem Expert. Thia
such as the presence of occluding objects. Expert ehooses operators to compute

candidate regions and calls other
operators to try i;o match the region
char-acteristtcs with the Region

Introduction Description. One kind of operator is an
Igshares Alaptive 2perator, which can vary a single

Image Understanding (I.U.) sparameter to optimize the mntch with c
many problems with the field of Artificial specific value or range of a feature. The
Intelligence (A.I.). The use of knowledge Operator an1 Image Problem Expert can
to control )rocessing is one such general Infer the existanue of a possiole image
problem. It an I.U. domain, this can be problem and take %ppropriate action. The
formulated as the problem of using both Appearanca Model Expert can infer
prior knowledge about the task dommtin, and high-level conditions and check spatial
knowledge acquired as proceseing proceeds, relations between regions to recognize
to choose a sequence of computations which buildings complexes.
will achieve recognition and locatljn of
the desired objects.

W( have formalizei the I.U. problem
in the following way. Prior object
knowledge is stored in an Appearance
Model, a graph structure encoding the
expected appearanae of the objects.
Computational PkiAitives are routines that
compute on images or derived data
structures. The I.U. problem is to find
a correspondence between nub-graphs of the
appearance model and subsets (regions) of
the input image, using the available

computational primitives.

SI l ll g ' .- - - _. . . . . .. .. . ,- , , • , .I
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2 earanca Models and Adaptive Ope!rators

An Adaptive Operator is a program

An Appearance Model is Y data that is given a candidate region rind A

structutre encoding the expected desired range of property values faor a
appearancet of a class of objects. This single property. This represents a goal
model could be derived by a "smart" to the operator of computing a derived
modeller from marty sources of prior region from the candidate with its
knowledge such as a light mod,1l, a camera property as close to the desired range as
model, and a 3D domain model. The possible. Each Adaptive Operator has
"appearance primitive" in our model is a knowledge of the effects of varying a
region. A simplified Appearance Model for single parameter of a single operator. An
buildings is shown ifn Figure 2, where Adaptive Operator uses this knowledge to
sub-model nodes are represented as vary the parameter, creating derived
re.tangles, property nodes as ovals, and regions from the candidate, to get a
p'roperty vaiue nodes (place-holders faor region that is the best match possible.
actual values) as double ovals.

For example, Adaptive-Match-On-Size
The Appearance Model Expert uses knows that for a dark region created by

rule-based knowledge of the semantics of thresholding, raising that threshold will
the Appearance Model , and any partial shrink the size of the region , and

results achieved so far, to choose lowering it will increase the siZe. It

sub-models representing the current goal. uses that knowledge to get the region size
For example, some sample rules in English as close as possible to a given size
are: range.

If no Candidates then Partial Results and Imae Problems
pick "Easiest" suib-model

Partial results are dealt with at
If Current-Model decomposable then each level in our system. Adaptive

locate Sub-Components Operators deal with partial results in the
Check Interrelations form of a non-optimal match by attemting

to derive regions that are a better match
If Partial-Success then to a given property.

check "close" other models
Another kind of partial result dealt

If Occlusion-Indicated then with by the Operator and Image Problem
locate possible Occluding object Expert is when a candidate region is

missing some essential feature. For
example, if after applying all relevant

being choosen. From that subaraph, a computations in attempting to find a
Region Description (RD) is created by rectangular region, the resulting region
taking all the region pitoperty values from has only three good corners, a hypothesis
that subgraph. This RD is a will be made that a Mer.in condition is
representation of the desired object in prese in the a Mergin g is ion o a

terms of expected region properties. This present in the imagei Merging is one of a
RDispssdtoth peaoran mae number of domain independent image

RD is passed to the Operator and rmage conditions that are handled at this level.
problem Expert. Once this hypothesis is made, several

alternatives can be considered.
Operator and Imae Problem Expert Basically, what happens .s that model

completion Is done, resulting in a rrodel
The Operator and Image Problem Expert of the merged building. This more

is given a Region Description from the complete model represents more known

Appearance Model Expert, and attempts to constraints. Other operators can now be

locate a region with the desired brought to bear in an attempt to
properties. To do this, it invokes instantiate the refined model. Figure 3
appropriate operators to generate illustrites a hypothetical exnmple.

candidate regions, and calls Adaptive
Operators to try to achieve good matches Finally, the Ocerator and Image
on specific properties. Problem Expert may fail to achieve a

perfect match. The Appearance Model
As will be described, this process Expert now has several alternetives,

can also infer possible image probl.,,s depending on the severity of the failure.
from partial matches. Once a problem is The Appearance Model Expert may decide
infered, an operator can be ohoosen to that a region computed from below is an

alleviate the condition, or more instantlation rf a sub-model other than
information can he computed and the Expert the one under consideration, and it will
can try again with the new constraintci.

2



attempt to verify thai. It may also make Region Description:
a high-level inference, such as that a Light
returned region was not a perfect match Intensity > 90
because it is being occluded by another 20 < Size < 40
object. I " can then examine the Rectangular: 4 corners tolerance 5.0
Appearance Model which may indicate what 4 sides tolerance 5.0
the occluding cbjet !night be, and it can
try to locate that object to verify the This RD is given to the Operator and
occusion. Problem Expert, which calls operators to

try to find a region natchind this
description.

Threshold (90) is called,
This section illustrates a single creating this image:

example of the execution of ouv' system,
appliel to a window of an aerial
photograph. The partial Appearance Model
used is one hypothetically derived,
perriaps from knouledge of this particular
site.

Appearance Model:

ntensi Building The lower region is ohoosevi as an initial

"-" adjacent candidate because its size is closest to
that of the RD. Adaptive-Match-On-Size

Light , hado varies the threshold, creating the
l fol'owing series of 'Images, with the

Dark threshold and size of the deriied region

SieSize below each figure:

5. Threshold 172.
Size 11.

Image 2, Threshold = 100
Size = 65.

To instantiate thia model, the Appearance
Model Expert fir.it attempts to locate the
building by choosing the left sub-model
and creating the following Region
Description:

31



3. Threshold 150. Discussion

Size = 14.
The example above illustrates two

features of our system. First, it ihows

as Adaptive Operator at work genertilng

derived regions to satisfy some criterion

(region size). Second. it shows the

Appearance Model Expert locating an object

by purts, using a constraint (adjacency of

parts) to limit search for the second

part. 't does not illustrate a curreh.t

ability of the Operator and Image Problem

expirt. the detection of random noise and

its application of an operator (local

4. Threshold 131 aver'aging) to alleviate it.
Size =19. Other workers in this domain have

approachs of our program, and have

achieved some good results[I. 2, 3, 4].

The analog of our Appea.,ance Model is

usually encoded as a fixed set of region

properties, rather than a graph of

different alternatives amenahle to

intelligent interpretation[1, 21.

Information from located objects is used

in (1, 2) to refine ,o property table,

which can result in a new segmentation.

However, little use of partial matches is

This candidate is now the right size. made, and none with the flexibility of our

Adaptive-Rectangle attempts to see this system.

region as a rectangle, and it succeeds.

This result is passed to the Appearance The most novel features of our

Model Expert, who now tries to find the approach J' e the Adaptive Operators.

shadow, generating the following Region While the hill-climbing techniques they

Description: embody are clas~ic, indeed, amoung the

oldest, in A.I. [5), their application to
Region Description: an I.U. domain is new, as is their use in

Dark a framework of our kind. It is important

10 < Size < 20 to recognize that adaptive techniques. as

in the rectangle: 20, 5, 35, 20 all other computation, must be used in
conjunction with an appropriate control

The last attribute indicates to look in a structure. In our case, Adaptive

rectangle around the located building. Operators are applicable only if the

ino Operator and Image Problem Expert candidate region is already "close".

calls Adaptive-Match-On-Size and again
succeeds. The adjacency condition is The framework of our program provides

checked, and succeeds as well. The two a flexible rule-based system that applies

regions, corresponding to the located operators when needed and relies on the

building and shadow, are outlined here: Adaptive Operators to fine tune candidate
regions. Each level in our program can
evaluate and use the results from the

level below, aud deal with partial

successes in a manner appropriate to that

level.

Conclusion

Our program, as it stands, is still
very sparse. It been run on six toy
images like the one presented here. More
interesting results await incorporvtion of
more Computional Primitives and rules to
guide them. Further details will be

presented in [6].
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Figure 1: A Building Location Program
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Database Support for Automated
Photo Interpretationj

David M. McKeown. Jr., and 'ikeo Kanade
*1 Department of Computer Scifince

Car..egle."elon University
Pittsburgh, PA 15213*

1. Abst~iact In the work~ on MAPS discusse in this paper, we are interestad

in applying spatial aid structu~ral constraints to the interpretation
This paper is concerned with the use of P~ database to oupprt of high resoiuticn aerial mtvpping and satellite photographs.

i~utomated photo intefgoretation. The function of the database is to Briefly, tt~ese constraints can be u6od to determilne "where to
* provide an enyionment in which to pý.rforni photo lnterprhialion iCok" and *what to took for". These constraints are represented

utilizing software tools, and repreenet domtain knowledge about an a map detabase. The map database itsel' is incrementally
the scen&3 being interpreted. Within the framework of fth jjnerated through interactiun with the system. from human and
database, image bntarpretatio.% systems use knowledge rstovid as m~achine segmontations of aerial iniag-try. and frocA collateral
map, terrain, or scene descriptloni to provide structural or spaitiel datu. Images are registered to the existing map through anI.
constraints tu guide human and machiine processing. We interactioe coirespondfnce procedure. iti which a human
duscribe one siuch system under development, MAPS (Map operatcr spmecifies insage-to-map correspondence guided by a
Asaisted Photo interpretation system), and giv~a som* general landmark database. Once an initial correspondence has been
rationales for its d4sign and implementatiov. obtained, it is possible to apply map domain knowledge to reline

the correspondence and guide further image processing. It is this
lterat~ve proceduire, using map knowledge to ýjuide processing

2. Introductioni and assimilating results back~ inito the map dataLbase, that is fte
core of future phot%). interpretation systems. Further. as we begin

One choracteristic of contemporary rvusearch in natural scene to dorrinstrate the rccmpetertcy of automatic techniques for
knalysis is that knowledge about -,,-eiie content is often highly feature extraction, registration, and identification, these syalttlAs
integrated into th3 recognitior, program. -The knowledge which cngauh elc hi neatv onepf
has been most often implemented is specri a! constraints; Is.
chauac~esrisic signich-"es of water, vegetation, manmade objects 'n the following sections we will examine several tasks in which
etc., when detected by sensors 1,1aving known signal reponse sp'a n tutrlcntanscnb sdt ud oi
chara~toristics. Some examples of such se~otrs are, multi- interactive and automated photo interpretation. The major
channel infrared, radar (FLIR, SLR), and multi-spectral (mss) components of our system will be presented.
(LANDS)AT, SEASAT, etc.). In mnany remote sensing applications,
where the size (grain) of manmade physical objects Is much
arn"1lier than the resolving power of the senmor, saltistical 3 ASSse ol
techniques are employed to classify relatively large land areas. 3 A SSse ol
These techniques have found application in areas such as land MPSsacoltinfitecivdslyornedxpt
use management, forestry, and geological mapping. However, programs which represent and utilize map, terrain, and image data
pattern recognition and remote sensing techniques based purely ovier a large area centered over Washington D.C. For a detailed
on spectral analysis cannot handle those classes of imagery discussion of the task domain and data rcpresentatkon and
where individual feature detail Is complex, and where shadows, organization see [51.
occlusions and other 3D scene domain effects predominate.Thearsvrlmaogaeoftirsach

a Show that map knowledge can be incrementally

*This rwaioch wa sponsored by the Delense Aevanced Regearch Prjet compiled from a collection of time ordered aerial
Agerry (DOD). ARPA Order No. 3597. and monitored by the Air Force Avionics photographs. Such knowledge is composed of
L&ý.watory under Contract F3361b5-78C 1551. The views tind conclusionS fin It structural and spatial feature descriptions, and a large
document awe tivme of the auftho and Shock' not be interpFeted ftrewn,~5,tWVl scale spatial organization (conceptual map).
thu owc val poiin, eifthr expreassad or knoiied, at fth 0r~ense Advanced
Revotchc Pr.aiects ~Agncy nr Ite U S- Government.
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e I a'P trate that map knowledge can be used to aid

in the automatic interpretation of aerial imagery by 4. Integrated Database Components
providing spatial and structural constraints.

9 Experiment with facilities which support data modeled In this section we will highlight some of the major components

at multiple levels of resolution, and which provide of MAPS. Much of the detail has been omitted in the interest of
computation in the symbolic domain: conceptual map, presenting a broad overview of the, major design concepts and
terrain descriptions, and scene descriptions. capabilities. Our philosophy in the system design has been to

* Provide an integrated database access and display decentralize the organization of MAPS into separate procesass,

capability to allow users to view map, terrain and with each process having a particular area of expertise and
feature descriptions superimposed on image data, communicating through well-defined data structures or files. In

some cases, where a closer coupling is desired due to frequent

SDcommunications, we envision using an interprocese

S3.1. System Data communication mechanism (IPC) [8). Each component is capableha of stand-alone execution which facilitates incremental system
The organization of a database system, which includes large development and integration. In addition, MAPS components We

numbers of complex imagery and calla'feral data, is a major valuable research tools In their own right for other members of ourresearch and design problem in its ( --n right. The reader is -sarch group. The current MAPS implementation runs on areferredc tooip The curen MAP implemntaton run proniv daape n
referred to (5] for h discussion of primative data tyea and VAX 11/780 running the UNIX uperating system with 3 megabytes
operations in mapping signal domain data into symbolic of memory and 700 megabytes of disk storage. Graphics display
representations. The following section tabulates the signal data hardware iicludes a Grinnell frame buffer display connected
revpresented in MAPS.

directly to the VAX over a DMA interlace with hardware zoom, pan,
• Image Data video digitizer, and tablet inout. A Dunn film recorder provides

35ram slide, SX-70, and Poloroid 8010 hard copy.
Approximately 40 aerial mapping photographs

providing temporal and spaial overlap. Scale 4.1. Intelligent Image Display
ranges from 1:12000 to 1:36000, digitized at

100microns aperture to image format of Window orienteddisplayS~204f•2xZ•18 with 8 bits of intensity informatioci i

p047 wix ti. One of the central components of the MAPS system is BROWSE
161, an interactive raster image display facility. BROWSE is a

o Color aid criulk-bpectral satellite imagery (6) in window oriented display manager which allocates and
resolutiors of 1;60000 and 1:1000000 for large manipulates three entlties. frames, windows, and images. A frame
area co'erage at lower resolution, is aii allocation of z-oufler space from our Grinnell framn buffer

()Digitized images from United States ',eologic memory, which has 32 bit planes dimonsioned as 512x512 pixels.

Survey (USGS) topogra:phic maps and common BROWSE maintsains the state of special hardware such as

tourist guide maps. These image• arb currently programmable cursors, replicated zoom and pan, and overlay
us,.'d as a graphical interface to provide memory so that it is indepeidently available to each frame.
covi.rage informatlon and cue~ng for users. Multiple frames can be allocated by the user, limited only by

Grinnell memory. The most frequent modes of operation areallocation of four monochromatic frames of 8 bit planes per pixel

USGS .igital terrain database, elevations over 3 each, or a single RGB frame with 8 bits per primary color and a
second 3quare grid in meters above sea level, monochromatic frame. By toggling between frames one can
Data is organizer. into 15 minute quadrants, quickly show stereo pairs, time ordered sequences or Illustrate
each containing 90,000 points. Access to any map to image correspondence.
grid point within the area bounded by <North
38deg, West 76deg> and <North 30deg, West
78deg). Window operations

Windows are dynamically created within a frame and are "a
e Map Data window into" a portion of a specified image. Windows are

displayed within frames at positions determined by Ims interactive
o Defense Mapping Agency (DMA) radar user, or by BROWSE. Operations on windows include: delete,

simulation database. Provides accurate
positional information for large manmade create, copy, more location, adjust position of image, expand and
structures and hydrographic features. shrink size, raise to top, and zoom. A general image windowing
Information as to composition arnd classification capability is necessary because of the mismatch between our
of features (bridge, commercial buildin-gs etc.) ability to digitize images (4096x4096 pixels) and generally
is provided in addition to vector list available raster display technology (512x512). In addition,
descrip'ions. simultaneous display of multiple windows from different images

8



can be used in Interactive stereo, time sequence and change .

detection tasks, and image selection hrom a menu of iwge 42. Ir.eae S latfei

fragments
In MAPS, rap knowledge acquisition Involves the Integration of

Symbolic naminiti Im segmentations and Collateral mp data. Image

BROWSE allows for the symbolic assignment of names to image segmentations specify a 2) vwecor dwerptien of cultural and

files. A standard set of command IWaes are provided which isoalos natural features. Features re classified as poin., lnear, or areal

the naive. user from the actual crganlzatlon of the image f end are given Identfiers which reflect their proper name (kennedy

system. For example, the command "(dct420" center) or feature type (runway1). Labeln of features is

perform-d during ha segmentatlion, or as a pril.proseung
open /vise/w•shdc/wg1/dc142011bw. lg Ibw1420 map
open /vise/washdc/wgl/,dc142O/2be. lg 2bw1420 map opwation on machine generated deecripeions . IfW

open /vise/washdc/wgl/dcl420/4bw. fm 4ow1420 map segmentation le can be generated by a .obnlnation of the

open /vlse/wtshdc/wgl/dcl4l0/Sbw. tug 8bw1420 *mp followlnglGireeprocedure*:
def dcl420 d mapped
setmap dc1420 /vlse/washdc/wgl/dc1420/Vmr.map Hand generated
addvwn dc1420 low.resolutlon 8bw1420 The user interactively e4cifl Othe position and shape of a

feature using a high iesoloiton display wnd a cursor.
"opens" or assigns symbolic names tbw 1420, ?bw 1420, GIc, to un CapahililIes include editing descriptions and image

hierarchy of resolutions of the genetic image dc 1420. A frame of segmentation display in multiple levels of detail.

type mapped is then defined by allocating 8 bit planes of Grinnell

memory and is piven the name dc 1420. Next a file containing a Map genorated
looup emappng function which spcialized to the spectrl Given an Image-to-map corfespondence we can use existing

lookup table mpimage database segmentations to generate a segmentation
characteristics of this image is associated with the frame. Finally, for a new Image. "his first order appwoximation can be edited

a window into the image 8bw1420 is defined in frame dc 1420 and by hand, or processed by machine to yield a composite image

given the symbolic name low.recohiiion. Symbolic names are descriptior.

consistently used throughout BROWSE to describe Iraones,
windows and images. The command interpreter allows for unique Machine generated

substiing abbrev4ations for any symbolic name, and redirection 0f Experimental coarse.fine segmentation using region -growing
and edge profile analysis has begun to be testad. Briefly, the

Inpu. from a command file (as shown above) instead of the users8 technique is to use a coarse hand or map segmentation to

termincl, specify the area within which a detailed machine

segmentation should be performed. The user can
Image resohltl.es Incrementally accept, reject or edit descriptions as they are

The relationshi) among resolutions is often explicitly used by generated.

BROWSE comiaends, which peform image zooming, image Figure 2 is plotted from the image segmentation file associated

placement, or prompt for an image coordinate. The general with aerial image in photograph 1. Symbolic na..,es from the

paradigm is to have the user specify an aroa of interest in a low segmentation file have been positioned by hand. The area

resolution which allows for maximum amount of image context to portrayed corresponds to the low. resolution window,

be displayed. Once the area of interest is specified, BROWSE
automatically creates a new high-resolution display window. The 4.3. Landmark Selection
user performs operations which require high resolution, such as

foature identification and segmentation, image registration, query In order to perform image to map correspondence, we have
specification, In this window. The ability to rapidly present both assembled a landmark database of approximately 140 landmark
the entire scene at reduced detail and selected portions of the

imag athighr rsoltionis ssetialto nteactie poto features. Typical (eatures include road intersections and traffic
circles, corners of park areas, bridge access ramps, and building

Interpretation.
corners at the ground.level. Selection criteria included the

Photograph 1 illustrates the use of a reduced resolution window following:

low.resolution to provide context for several fuli resolution
windwsjete~so~meorgl, wteralehote, mnumnt, Uniqueness

windows, Jetferson. memorial, watergate.hotel, monument, Easily visible from above, uniquely shaped, easily measured;
white. house and linco,'n. memorial. This display was created using e.g. ends or junctions of linear features rather than "center".

the windowing and zooming features of BROWSE. A partla!

segmentation associated with this image is displayed in color from Non-temporal

Grinnell overlay memory. The loss of color and lack of contrast In The landmark feature should not be sensitive to normal

publication mRy make it difficult to see the vector outlines. seasonal changps In foliage or water levels. This ruled out
many interesting river and park landmarks having distinctive
structure in aerial photography.
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Figurto 1: Window DiSplay In MAPS
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Spatial Image scale, diitliation site, and assuming image
Landmarks should be spatially spread In order to provi-te orientation. This estimate allows MAPS to genotrate Imae

capability to perform accurate correspondeace over tafentire task eroo. user expertise or famiiait with the regiont covered by fte
imaW.

Dimensional and 3 Dimensional
Initially the correspondence between our map and data b Step 2. Perform corespondence

Our correspondtonce process (3) is Invoked with a file ofis tw o -d i rne n s io n al , T h is im p l ies th a t te , tu rt• w ith e x trem gmi xleo d n a l a a d c o r s o d n g l n m r
elevations, such as the root of multi-ntory buildings, are not Image IXel coordinates and coresponding landmark
appropriate, Corners of buildings (at grouno level) er latitude/longitude pairs. This correspondince pair file is
currently used. Hover, we expect that as the system ued by MAPS to produce coefficients for image-to.map
grows, 3 d features will be accumulated and used to compute linear, sacorid order and third order polynomil
the camera model of a given pictre, approximati,0s. Mean error, variance for each point, and a

meanure of model error (Predicted Sum of Square (PSS)) are
computed. The best order model is evaluated based on #%a*

Each landmark description in the MAPS database consists of Ts e aorderpmode l i s ate aseonitedmea~lures. Correspondence coefficient tiles are associated
map and image coordinates, a textual description of the landmark, with each image in the database.
and an image fragment containing the landmark point. Figure 3
gives a sample landmark description from the database. Step 3. Landmark candidate generation

The coefficient file generated In step 2 Ia used to calculate the
The ;andmarks are 'manually created and edited using an map coordinate of the four Image corner points. These

interactive display program. The use of the landmark database coordinates are used to search the landmark database forposslible row la~ndmrks within the image coveagri
component will be discussed in the follcwing section on image-to.

map correspondence, Step 4. Select, Add. Modify, .elete
LDMý base file name [mcphersq] The image-map correspondenc pairs used to aenerate the

latitude N38 54 8 500 coefficient file in st3p 2 o', redisplayed. Bounding boxes
longitude W77 2 2 400 indicating the original point selected by the user, and the

307,1758 in /vise/washdc/wglldc38617/lbw.lg• position calculated by application of map-to-image
landmark image at resolution I coefficients are superimposed over the image display.

Landmark candidates generated in step 3 amr also displayed.
A small park square in District of Columbia NW. The user ran select a particular landmark, zoom the image to
Located just north of Veterans Administration view a high-resolution window, and modlfy or delete
and lafayette Buildings. Control point is in correspondence pairs. Landmark candidates may also be
upper right corner of the landmark image. selectedforadditiontothecorrespondnce pairile.

Figure 3: Landmark description for McPhemon Square Step Iterate

The addition, deletion and modification of correspondence
pairs can continue bý invoking the correspondence process•

4.4. lmage*to.Map Correspondence (step 2) as desired. Error statistics generated by the
correspondence routines are useful for detecting stopping

In order to integrate irn3ge segmentations, map image data, and conditions.
collateral map data such as USGS and DMA feature and terrain
descriptions into a consistent representation we perform an Photograph 4 shows a sample correspondence display. The

image to-map correspondence. The steps in performing the position of the overlapping rectangles in the image (color
correspondence between a new image and tht, map database are overlays) indicates to the user the magnitude of the local error for
as follows: each of the correspondence pairs, The mcpherson square

Step 1. Initial Identification landmark previously described in figure 3 is zoomed In cwindow.

Au initial set of corresponding points are specified by Future directions in the area of image-to.map correspondence
selecting descriptions from the landmark database. include using multiple points in specification of landmark position,
Landmark selection is performed by explicit naming or menu using local 30 scene information, and automating the selection of
selection of landmark image fragments. We plan to extend landmark and image correspondence pairs.
this to selection by landmark description, e g, "bridge over
Potomac", to display image fragments satisfying the 4.5. Mop Database
description, Once a landmark is veAectad, users
prompted to graphically indicate the correspording point In The map database component of MAPS is central io providing
the new image. The selected landmark image fragment is access to imagery, guiding photo interpretation, and processing
displayed for reference. If the user specifies correspondence queries about manmade and natural features. Through the Image,
in a low resolution window, a high-resolution window i qr
automatically created and the point is respecifled with greats, tomap coMreSpondence procesa, map knowledge can toe applied
precision. An initial guess of map coverage can be computf.d to any image, and the spatial relationships of sets of imagery can
after specilicnviun of the first corresponding point using be established. We have described how Image segmentations, va
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Fi;ure 4: tmag,. to-Map Correspondence

ujsed :o extract feature dosriptions and how th.':e segmentations imagery is a difficult problem. In many cases boundaries are Ill.

vnn be integrated through the same vorrespondence process., defined and highly dependent on the user's own spatial model.

S.irnl•vail,, leature descrio!ions from collateral data, such as the There is clearly a hierarchy cor'esponding to levels of detail

V:A. ruc%," sirnultion database. are included in MAPS, among conceptual features which must be preserved in order use

such knowledge effectively.
We would li.e to extend the notion of a purely neature-oriented

map database to one which has the ability to represent general The advantages of providing such a representation are

spatial knowledge in the scene oomain. This conceptual map important. First, conceptual features can be used to partition the

provides a framework within which individual map features can be map feature space. This partitioning would be based on natural

associated with hlgh-level semantkt map des. 'ptleon. spatial re'ationships, ones which are likely to arise in database

Conceptual maps capture the spatial arrangement in urban areas queries, rather than artificial cellular or raster decompositions.

o! neighborhoods, political, and geographical boundaries. For Second, many queries into the map database can be resolved at
example, terms such as "Northwest Washington", "Foggy the symbolic level, without resorting to geometric compulations.

Bottom", "Alexandria, Virginia" are often used to describe general This it particularly true if static relationships such as intersection,

areas within and around Washington D.C. They provide an inclusion, and adjacency can be pre-computed and represented in

important mechanism for symbolic access into an 'nage database, the conceptual map. Queries of the form "does x intersect y"

e.g. 'display images of Georgetown later than 1976". However, should be handled by looking up the binary relationship intersect

depicting precise boundaries of conceptual features from aerial
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for x, V sind all entities which inako tip x and V Of course, when 7. Acknowledge-nents
the actual locition of the irtei-sectmon is required, a geometric
openution mnuat bei performed. However, if it "a y V Programminig asssltanc f. by Jerry Denlinger, Fumlnobu K,.mura,
hierarchically represented hy their ce~icaptuai conXneaits, a and Jenhn 7saritiey conriubuted to many of the MAPS system

symbolic query can be used to find the components which components.
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DETKEMINING THE INSTANTANEOUS DIRECTION1
OF NOTION FROM OPTICAL FLOW GIERkATEIt

BY A CURVILINEARLY NOW;IN OBSERVER

K. "razdny

Computer Vision Laboratory, Computur Science Center
University of Nayland, College Park, ND 20742

ABSTRACT eu-trva.ting ths Image velocities from changes in the

A method is described capable of decomposing Image intensity values on the projection surfaces.
the optical flow into its rotational and transla- rollowing this, it remains to solve thm problem of
tional components. The translational component
is extracted implicitlyby locating the focus of computing ".is required information about (local)
expansion associated with the translationil coupon-
ent of the relstive motion. The method is simple, surface orientation, relative depth and motion from

relying on minivizing an (error) function of 3 pars- the distribution of these velocities. While the
meters. As such, it can also be applied, without
modification, in the case of noisy input information. interpretation of optical flovN logically depends

Unlike the previous attempts at interpreting optical on the solution to the problem of extracting the
flow to obtain elements, the method uses only rela-
tionships between quantities on the projection plane. constituent velocities, the problem can and should

No 3D geometry is involved. Also 3utlined is a be studied on its own, for its solution not only
possible use of the method for thQ extraction oi
that part of the optical flow containing Information explicitly voices the requirements on the quality

about relative depth directly from the image inten- of the velocity extraction process, but also deter-
sity values, without extracting the "retinal"
velocity vectors. mines tbh ultimate success of the whole enterprise.

Recently, optical flows (and time varying

imagery in general) have rezeived growing attention

among the coAputer vislun, community as a source of

possible information about a scene. Nakayaua and

INTRODUCTION Loomis (1974) and Fennema and Thompson (1979)

The distribution of velocities on the projec- studied how discontinuities in the "retinal" velo-

tion surface arising as a consequence of the rela- city field could be used for segmentation purposes.

tive motion of objects with respect to the observer, Clocksin (1980), Gibson et 4l. (1955), and Lee

the optical flow (Gibson, 1950, 1955), contains (1974) studied how the optical flow 3eneratid by an

information not only about the (relative) motion observer translating in a stationary world provided
itself, but also about the three-dimensional information about (local) surface orientation.

dispomition of the *et of terture points of which Koenderink and van Doom (1976). Longuet-Higgins

a given set of image elementa is a projection and Prazdny (1980), and Prazdny (1980, 1981),

.Note 1>. The distribution of image velocities on studied the extraction of surface orleatation,

the projection surface is a function of three pars- (relative) depth and motion from optical flow

meters: the (relative) motion of objects, their generated by an arbitrary curvilinear motion.

distance to tho centcr of projection, and the local Another kind of approach, sometimes considered more

thret-dimension,%l gometry of the objects. Fortun- suitable for a computer vision system, relies on

ately, however, tneir effects are, conceptually at interpreting a sequence of static images as dis-

least, separable (Pra&dny, 1981). crete snapshots ( see e.g., Nagel, 1981; Aggarwal
and Badler. 1980). The computation of "retinal"

The problem )f extracting information from velocities from image intensity values was studied

optical flow can conveniently be divitlad into two by Fennems and Thompson (1979), hadani et al. (1980).

stages. First, oue has to develop a method of
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and Horn and Schunck(1980). itI ._a. .ipproaches and Pragndy (1980). The method c,:n, but does not

ba-LW vi matchit-• "%•-us nigher-ordet image have to be, implemented an a local computation.

structures obtained from two (temporally) consecu- While we have chosen, for simplicity, to consider

tive images weks attempted by, for example, Barnard only tie came of an observer moving in a stationavy

Sand Thompson (1980). world. it should be noted that the method has a

i In this paper, we outline a method foi ub much ..ore far-teaching implication. Ilecasue it

iltainins! "it istotntaneotus dire~tion of (relative) produces n description of relative motion, it can

motin fem ptial lowmsnfasod s iagebe eppl'.ed to a region of the image locally to

noinfe otclfo maif~estedasI:mage d
notions on the planar projection surface. We use

polar projection as the model of the physical independently.

image forming process. Also, we assume throughout LOCATING THE FOCUS Of EXPANSION (FOE)

the paper that our world !ontains only rigid and !o see that it ts possible to decompose the

opemethd prsanted here does Instantaneous positional vilocity field on the

ht ue eprectied from tgeometrical relationr, as projection plane into its two components, consider

ht from the use of the polar prac- the effects of rotation atd translatit-n separately.

tion; it iv based on computations c.id relationships It is advantageoti*. to imagine that the optical flow

defined and measurable solely on the projection field Is generated by the motion of the observer in
plane. For example, the method does not require a stationary environment. This conceptualization

Itnowing the visual direction (a 3D vector) of a has an immediate interpretation and is, of course,
"retinal" polint (as was v.equired, e.p.. in "legitimate, for all motion considered here is

Prazdny, 1980). relat ve.

Before outlining the method, we briefly con- Consider the observer rotation first. Because
sider a few relevant facts. Optical flow can be the rotat-onal component of the relative motion

(instantaneously) decomposed into two independent does not carry information a~out the 3D disposition

couiponents (Koenderink and van Doorn, 1976; of the texture elements, the mtion of an image
ofaym the texture elements th rotaona aod animg

Nakayamsi and LoomiR, 1974), a rotational and a element on the projection plant will depend only on
.uny the trans- its position on PP. A rotation vector (angular

latiunal "retinal" z'eld consists ot motion along velocity vector peipendicular to the instantautous
straight lines all intersecting at n common point, plani of rotation) can be decomposed into two coui-
tho focus of expansion (FOE). This point corres- ponents, one parallel to the projection plane (PP),
ponds to the point where the (three dimensional) and one perpendicular to it (see Figure 1) <Note 2>.

vector tangent to the motion path described by

O at a given instant) pierces the projection plane. Consider the rotation about the vector per-

Our meehod, by ssarching for this point, effect- pendicular to PP first (the z--axis in Figure 1).

ively decomposes the optical flow field Into its For each "retinal" point P with coordinates (x,y),

two constituent fields. Briefly, the method is the rotation of the observer about the z-axis (per-

based on minimizing an error function of three pendicular to PP) results in P moving along a

parameters. The construction of the function circular trajectory on PP. The motion of P on PP

reflects the following obgervation: if the three is specified by a direction vector c-(-y,x)/

parameters specifying the roLat.Lonal component of "(xy, and by the magnitude c-CoV/c0 y2?, where

the (relative) motion are chosen properly, the c0 is the speed of a "retinal" point at a unit

translational "retinal" f.>.d yield lines all distance from 0' (the center of the "retinal"

meeting at FOE. We do not require the spatial coordinate frame). The (2D) velocity of P(x,y)

derivatives of the "retinal" velocity field, as in due to observer rotation about the z-axis is thus

Koenderink and van Doorm (1976) or Longuet-Higgins given by

(I) c(xy)=c 0 (-y,x)
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Consider now the situation i,. which the ob- define a visual angleC, Now at a time t! (after

server rotates about a ve-cor parallel to the a rotation of PP by some angle), R projects into
projection plane <Note ý'>.To simplify the discus- the point (x,y) while S projects into the point

sion, we consider only rotation about an axis (x,O). It is evident that the two projections move

(through 0) parallel to the "retinal" y-axis. The sc that at any time, their x-coordinatei are the

expression for rotation about a parallel to the same. In other words, the x-components of their

Y-axis is symmetrical in the coordinates x and y velocities on PP are the same. We know that the
(compare equations (5) and (6)]. We first show path of P is a hyperbola. It is thus sufficient to

that the path of a point P(x,y) under rotation compute the horizontal velocity component and pro-
of the observer about the y-axis is a hyperboli, je,ýt it back onto h. to obtain hH, the magnitude of

and then derive the expression for the velociA.y h

vector h at P(x,y). Consider Figure 4. If the point x moves with
Consider Figure 2. A stationary texture angular velocity h 0 (recall that 1OO'-1), then h

0 xelement in the 3D environment projects into a iR defined by
point P(r,y) on PP. As PP rotates aboi, a line

parallel to the y-axis, the ,oordinates of P will h 0 2..
x coen

eventually become P(O,yo). Observe that the

projecting ray defines a fixed visual angle with But co+n-1// X2il (see Fignre 4) au that hx~ho(x2+I).x0
respect to the plane of rotation. Jt is clear Projecting hX back on 1iH and combining the result

from Figure 2 that with equation (3) we obtain

2= 2 C 2 _Y_2 (5) xy)
y 0 tn - I

x +1 Hero hen is the 3peed of a "retinal" element at 0'.

This is because the distance 1OO'1-l, by assump- Analogously, the rotation of the observer about an

tiou (this effectively scales the whole projection ax's (through 0) parallel to the "retinal" x-x'isi

system by the focail distance). From this, we results in the velocity vector hV defined by

obtain (6) hv-hov (xy, y2 41)
2"(2) - - I The input data we are trying to interpret, the

2YO optical flows, consist of a set of vectors v" de-

This is the equation of a hyperbola with center at finiog the positional velocity field on the projec-

origin 0'. The direction of the velocity vector at rion plane. Because we aze dealing with velocities,

P(x,y) is determined by the tangent line at that it is easy to see that
point. Differentiating (2), we obtain

S(7) v" -c+ (h_ +h ) +t

-y tant, where t is the velocity vector due to the pure
2

translation of the observer. In other words, for;'(see Figure 3). h1H is thus determined by h H =
H Heach "retinal" locus (x,y), and a set of parameters

(cos,,siný). In terms of the ("retinal") coordi-
nates (x,y) of P, this becomes (h 0OH,c 0 ,hov), equation (7) defines a vector t which

as n vector function of the three parameters.(3) h(X +(x+,)(xy2)

H (x+, xy) As mentioned above, the property of the
(!l+y translational "retinal" velocity field (defilnd as j

To determine the magnitude of •, consider two straight lines specified by a given "retinal" locus

fixed points R and S on two rays such that at (x,y) and the associated vector t) is that all then
time to, the points coincide with points P(0,yO lines intersect at one common point, the POE (see

and 0', respectively (see Figure 3). The two rays Figure 5). This property makes it possible to
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define an error function which will lead to resolu- space to meaningful values and to prevent possible

tion of the vector field v" inco its rotational divergence of the iterative process. The minimali-

and translational components. For a given distri- zation procedure converged to a correct solution

bution of v" on PP, we are searching for those from any initial guess within this feasible region.

values of the parameters (hOHco,hOV) for which Not all eight distances Ii were used to define V.

the set T-{t i) is such that all lines Li defined To minimize the influence of (quantization) errors,

by the vector ti and the retinal locations P the lengths Ii were ordered in magnitude and the

intersect at a common point, the FOE. two extremal magnitudes were discarded. We also
One way of doing this is as follows. Consider tried to use the range of Xi (defined as Itx

an arbitrary "retinal" point P [with coordinates -1min1) as the error function with good results.

(xy)] and a set of other (possibly neighboring) In both cases, the FOE was located precisely (using

points {P }. The points Pi together with the jingle precision arithmetic [7 significant digitsj).

vectors t1 define lines Li which intersect the When the precision with which the vectors v" were

line L at points i (see Figure 6). Consider the defined was lowered to 4 significant digits (the

lengths Zi between the intnrsections I and the angular error made by this quantization depends on

point P. The variance V - T (9, -) 2 /n (where Z the magnitude of the vector v" [see Figure 7]), the

is the algebraic average of the 2a) is a good FOE was located within approximately ±5 degrees of

measure of the dispersion of the intersections I arc of the correct position. Extensive testing with

When the lines L all meet at FOE, V-0. To cbtain real data (and using a more efficient and faster

minimalization schema) should be performed to deter-
OV mine hay :he errors in v" propagate through the

Note thl way in which the decomposition is accom-

plished: a property of the translational field is computations and affect the precision with which

here used to obtain the rotational field, resulting the FOE can be obtained.

in both fields being obtained at the same time, by DISCUSSION AND CONCLUSIONS

the very same computation. The method, being It Is important to realize precisely what has

minimalizatien of a distribution measure, can also
immeiatly e aplid wen hpinpt dta thebeen achieved, and how. Given a set of "retinal"

vectors v" on the planar projection surface, we have

vectors v") are noisy. shown that it is posslb e to extract the transle-

SOME EXPERIMENTAL RESULTS tional velocity field, i:ontaining all information

The schema described above was tested in a about spatial disposition of the texture elements,

(simulated) world of planar surfaces. The results solely by computations using data available on the

are encouraging. Eight points surrounding a cen- projection surface (see Figure 8). In fact, besides

tral point were used t define tha et the velu3city vectors v"l, only the positions of the

obtain the variance V. It should be noted that corresponding loci on the plane with respect to a
fi-ced reference point (the "fovea") are required.

while in our implementation neighboring points were

used (~the neighborhood subtended about 15 degrees Another feature of the method is that it can be
usedmete ash negboho localde comutait (th radiuees

of arc), this is by no means a necessary condition. implemented as a local computation (the radius of

A direct m'.nimajization scheme attributed to Helder the neighborhood would have to be large enough),

and Mead (Nash, 1979) was used to minimize the and thus performed at many "retinal" locations in

variance V. The scheme was used Aainly for its parallel, thus decreasing the dependence of the

Simplicity and ease of encoding. The values of method on a good initial approximation to the

h0coo and h were restricted to lie between ±90 parameters hOH, c0 , and hOV. The simplicity of the

degrees of arc/sec (the "negative" values corres-~ method is striking, especially in comparison with

other methods purporting to achieve the same resultsponding to counterclockwise rotations). This

feasible region was defined to restrict the aearch (e.g., Prazdny 1980; see also Nagel 1981). The



method requires only a few points und the corres- on the projection surface. The method can be imple-

ponding "retinal" velocities as input (for ex- mented locally and is leXc feasible biologically.

ample, in the visual periphery, wnich is apparently Speculativtly, perhaps, its operation might be re-

used by the humAn visual system to compute e- flected in the recent finding of the "looming" or

motion (Johansson, 19771). One disadvantage of changing-size channels in the human visual pathway

the method is that it fails when the direction of (Regan, Beverly, and Cynader, 1979); Beverly and

instantaneous motion is parallel to PP. In this Regan, 1979).

case, the FOE is undefined (it corresponds to an NOTES

ideal point of the projective plane). This is <Note 1>

not a serious drawback, however. Another similar

method based on Kaaximicing the parallelism between In general, only conclusions about relative quanti-

the vectors defining the translational field could ties can be derived by interpreting optical flows.

take care of this situation. Local surface orientation, relative depth (the

ratio of distances of two texture elements in two
It is also important to realize that once the

distinct visual directions), and relative motion
FOE has been computed, we immediately know the

direction of the translatory motion on the pro-

jection plane at each "retinal" locus; it is simply <Note 2>

the line connecting the FOE with the given locus The following notational convention will be m\sed

(on the "retinal" plane). To obtain information throughout the paper. n denotes a vector, n is

about (relative) depth or (local) surface orienta- its unit vector, and n is the norm of n, i.e.,

tion, we need to compute only the magnitude of n = tn. Angular velocities are conceptualized as

motion in this direction; the two-dimensional axial vectors, i.e., vectors perpendicular to the

problem is thus reduced to a more manage ble one- instantaneous plane of rotation, with magnitude

dimensional problem. This leads directly to a more equivalent to the ang'lar speed. The word "retinal"

general schema where only the velocities (v") of will be used to denote the projection plane, PP.

a few "interesting " rimage elements (at "prominent" P(x,y) denote a "retinal" point P with "retinal"

locations where the velocity v_" tcan easily be coordinates (:,y)-in the two-dimensional coordi-

detected) are computed first to locate the FOE. nate frame centered at 0'.

Following this the magnitude of the translatory 3>

motion at each image point would be computed without

expliclt extraction of the optical flow (the velo- The set of paths traced by the iWage elements under

cities x") itself. As was noted by Batali and this motion is a family of hyerbolas with principal

Ullman (1979) or Horn and Schunck (1980), one can axes inclined at angle w with respect the y-axis.

compute, by a local computation, only the velocity The family is symmetrical about a straight line

component In the direction of the gradient of the through 0'. This is the line corresponding to the

image intensity function at a given "retinal" locus, intersection of the plane of rotation with the pro-

But this is all we need if the FOE were already jection plane.

located: by projecting this velocity component onto REFERENCES
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h01 , by

hue irc safution(/ of th pree O Figure 6. To find the ntreioofL with L ?

I),we have to solve for 9. in

Y To obtain 9. we multiply both side. by tI, the perpen-

- - tt

\ C. where P and P1 are the (2D) position vectors on the
projection plne. If t'.(tx,ty) then t'-(-ty,t ).00

L L

Fi,,re 5. An image velocity Y' (on the planar pro- -
Jection surface PP) of a point P can be resolved -into three components. he hyperbolic component

h is due to the rotation of the ray about an axis(through 0) ionthe Froje t tlane tsh e angular --

velocity is a 1.inear combination of x and y). The
circular component c is due to the rotation of the
ray about an axis (through 0) parallel to z. Thetranslational camponent i is the remaining hector Figure 7. The quantiaatiou error increases with

which constrains the decomposition of v"; t is decreasing vector magnitude. At h, an error of
constrained to be such that YQi•iP: (Li intersect about 10 degrees of arc is made by representing
in one coimon point). In the illustration above, v as v•, while at a, such a representation resultsthe direction angle of the hyperbolic field is In an error of 45 degrees of arct
zero, i.e., the observer rotates only about b line
parallel to the y-axis.
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. Torresponding troanslationai ve r fiel d genoteQ the FOE compse ed by the metaod (errorn 0). hrheinformatdon about the (local) sur(ace orientation and relatioae depth is contained roa in the magnl-
I~itudes of the velocity vectors; the direction of the vectors (and the POE) depend • on the para-meters of the r. la-ive motion.
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RELAXATION MATCHING APPLIED WO AERIMAL GES

K.E. Price

Image Processing Institute
University of Southern California

Los Angeles, California 90007

INTRODUCTION

We have developed a symbolic matching system permanently assigned elements can be used in the
which can be used for a variety of matching tasks computation.
in scene analysis. Tne system is designed to
handle many of the problems encountered in the The repeated initialization is a crucial
analysis of real scenes: noisy feature values, component of the process. Since the initial
missirq elements, extra pieces of objects, many guesses are made only on the basis of feature
features, many objects. At the heart of this value (color, shape, texture, etc.) many incorrect
system is a relaxation based matching scheme. A assignment are initially highly rated. The

variety of relaxation procedures have been used relaxation steps eliminate many of these mistakes,
with varying results, but cannot correct all of them because some

correct assigrnents are not among the early

The basic matching procedure (l] and the candidates. This procedure also easily allows for
various relaxation methods [2,3] are discussed multiple segments in the image to be assigned to
elsoewhere and will only be outlined here. This one element in the model.

r paper will concentrate on a discussion of the
overall matching system and the performance of the The final termination condition is the number
various relaxation techniques, of iterations without any assignments reaching the

threshold. This number must be large enough so
The input to the matching procedure is two that valid assigrinents can reach the threshold but

relational strjctures-one for the model of the not so large that an incorrect assignment is
scene and the other for the input image. The forced, by default, to a large value. This is

structures are represented as graph structures especially true with our prisary celaxation method
with objects at the nodes (with associated feature El] where something is always forced to a high
values) and relations between objects as the arcs value (how rapid can be contvolled and we use a
between the nodes, relatively fast setting).

SIYMBOLIC MATCHING PROCEDURE Several different relaxation updating schemes
can be used in the inner loop. The simplest

The goal of the matching procedure is to find technique is the "classical" nethod of Rosenfeld,
the objects in the image (regions and lines) which Hummel, and Zucker (2]. our primary technique [E]
be best match the objects given in the model. This is similar, except that the updating is always in
is essentially finding a subgraph in the image a direction which improves a global criterion. A
which is isomorphic to the model, except that third method is that of Kitchen [3] which provides
objects may be missing and single nodes in the a different means of combining match rating from
model may correspond to several in the image when different properties. See the Appendix for

objects are broken apart by the segmentation summary of the relaxation updating functions for

procedures. these methods.

The matching procedure is divided into two RESULTS
iterations (see Fig. 1). The outer loop consists
of computing initial estimates of the assignments The various methods were tested on 3

for all elements in the model. Up to 30 potential different aerial views (1) a scene with 14 storage

assignments for each element are maintained. Then tanks, of 5 different sizes, (2) a high altitude
a relaxation procedure is applied which updates view of the San Francisco area with 14 objects
the ratings of the assignments. When the rating identified in the model (95 in the image), and (3)
for one assignment of an element in the model a view of the Stockton, CA. area with 20 model
exceeds a threshold, the relaxation update loop is objects (24 or more valid matches possible, and
"terminated ard all assignments above the threshold more than 200 image elements). The results on
are made permanent. Then the process continues these images allow us to make some general
with the rec(xii•vtation of the initial estimates, comments on the performarce of the various
but now relations (above, near, adjacent) with the methods.
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The basic techinique of Rosenfeld et al. (2] Third, our method performs better than the
quickly makes sevNeral assignments in each of the others in these tasks. one major reason is the
test scene, but then reaches a stable state with optimization procedure used to guide the updating
low probabilities for the most likely assigrmient. thus some assigrinents are discovered early and

then contribute substantially in the search for
'The method of Kitchen [3] allows for a further matches. Also, in our system, all

variety of conbining methods (by using different relations and featurc's contribute to the rating
functions for the fuzzy set operations), rather than only the best or worst as with Kitchen
Additionally, restricting the computation to use using MIN and MAX.
only the one most likely assiglinent of neighboring
(related elements reduces the time substantially Fourth, the 17 incorrect assignment by K-2
and improves the performance. for Scene #1 start after 13 correct matches are

located. This is accounted for by the way we
The results of running the various relaxation handle multiple assignments for model elements and

methods are presented in Table 1. 71e set o! by the fact that multiple matches for image
assigrinents shown n Figs. 2, 3, and 4 are the ones elements are only discouraged not forbidden. The
generated by the criteria optimization method change from MIN to product (between K-I and K-2)
described fully in [I] (FP in Table 1). K-I is also contributes to the problem.
the Kitchen method [3] which uses MIN, MAX, and
the mean for it, U, and the outer I (Form 4 in his The updating approach adopted by Faugeras [1]
paper) , the use of MIN for the outer (Form 1 in clearly perfonrs better and operates faster. Each
his paper) produced no assigrnents in our tasks. iteration of this program takes longer, but fewer
K-2 uses product instead of MIN (Form 5). K-3 is are required.
the sane as K-1 exact all possible assigrynents of
neighbors are considered rather than the one most REFERENCES
likely assignment. Kitchen's Form 6 produced the
same results on our tasks as K-2. RHZ is the 1. O.D. Faugeras, K. Price, "Semantics
classical Rosenfeld et al. method (2] and is Description of Aerial Image Using Stochastic
included as a historical reference point. labeling," IEEE-Trrans PAMI, to appear, preliminary

version in Proc. Image Understanding Workshop,
The threshold for forcing a permanent Univ. of Maryland, April 1980.

ass~grlnent is 0.75 (for the Kitchen algorithms the
values were normalized only for this test) and 15 2. A. Rosenfeld, R.A. Hummel, and S.W. Zucker,
iterations were run before terminating the "Scene Labeling by Relaxation Operations," IEEE
procedure due to lack of assignments. In tests Trans-SMC, Vol. 6, No. 6, pp. 420-453, June .1976.
with our algoritlhn, changing the 0.75 threshold
(between about 0.7 and 0.8) by sinall amounts has 3. L. Kitchen, "Relaxation Applied tc Matching
little or no effect. Increasing it requires more 9uantitative Relational Structures," IEEE Trans.
iterations and thus more time and some assigninents S4C Vol. 10, No. 2, pp. 76-101, Feb. 1980.
may be lost. The results include only those
assignments which exceeded the threshold (0.75) APPENDIX
and does not include the most likely assignments
at the time of termination (15 iterations) . We only present a sLnmary of the equations
Includin•n all these would increase the number of for the relaxation updating the details are
correct ones with no clear separation in contained in the appropriate papers. Therefore
likelihood values between correct and incorrect many of the terms will not be fully explained.
ones. The classical Rosenfeld et al. method [2] is:

Several comments can be made from these p(n) (n)
results. First, Kitchen's method was not designed (n+l) i knQ k
to fit into our matching system and is not (i k= (i)
oriented toward quickly producing unambiguous pi (n )Qi (nQ)
resalts for a few of the elements in the graph.
But this feature is necessary when dealing with n in 7t

problem domains such as these (i.e. many feature pi(nk) is the likelihood of assigni•c.t- fsa unit i
valves, many elements, similar objects, and noisy to name k, Q is a measure of the compatibility of
data). the assigranent with assignments of neighboring

units. N is the set of all possible names (image
Second, considering more alternatives for elements).

neighbors does not improve performance, but
decreases it with a substantial increase in time. The Kitchen updating method [3] is (rewritten
this was not totally obvious without experiments) for our problem)
since the likelihoods of the second, third and
other alternations are much less than the most
likely one they should contribute little, it any, p(n+(nk) = L.(nk) (2)
to the computation. Tests with the other methods
(K-2, FP) give similar results (decreased
performance increased time).
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Swhich is also used to cornpute the Q's in the
i uequations above and below. The generality of the

m all relations rel all n original formulation is not retained - only
s.t. u. rel u. t. features of single objects and relations betweennk el n two objects are given - rot the arbitrary numberte l ljof the original.

The thiird method of Fauxjeras (1) is:

[P(n k)"P (n Z)Fb(ui~rk Iu3 f.1] Pjn (3)
_*(n+l) -(n)
Pi =Pi +pn P i .g (4)

rP.flU.,1]where On is a positive number (step size) to
a ln control the speed, Pi is a p~ojection operator to

of ur maintain the constraint that pi is ii probabilityvector, and 4i is a gradient fur..:tion computed
from the compatibility measures and curre,•twhere and are the fuzzy logic AND and OR probability values for an oo.jiet and itsoperations. C is a local consistency neasure neighbors.

Number
Method Scene Correct Incorrect Not Assigned Tim-,

K-i l(Tank Farm) 12 0 2 5
K-2 1 14 17 0 30
K-3 1 0 0 14 -
RHZ 1 14 28 0 29
FP 1 14 0 0 4

K-1 2(San Francisco) 7 0 7 19
K-2 2 9 0 5 28
K-3 2 7 0 7 4:50
RHZ 2 8 11 6 53
FP 2 14 0 0 9

K-1 3(Stockton) 9 0 11 1:25
K-2 3 16 4 5 3:00+
K--3 3 6 0 14 6:00+

RHZ 3 16 11 6 2:30+
FP 3 24 1 0 1:00

Table ]. Relaxation results.

Compute Initial Likelihoods

Apply Relaxation

NO
Any of rmzast likely above threshold

Make Assignments

Fig. 1. Use of the relaxation procedure
in the overall matching system.
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Fig. 2. Storage tank results. Fig. 3. San Fracisco scene results.

ILI

Fig. 4. Stockton area results.
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LINE FINDING WIrTH SUIIIIXEL PRECISION

L P.J. MacVicai.Whelan and T.O. Blintord

Artificial Intelligence Laboratory, Stanford University, Stanford, California 94335

weighted averages over a pixel area. That introducei a

Abstract spatial smearing from thec discrete sampling. The gradient
has a maximum wbich cannot be located closer than the

An ilteiiieliae leel isin sytemtat tilses nearest integer pixel,O.29 pixel rms error, and with effects

grety wal~te levels (typically 8 hits or 256 levels in ouir came) of thinning, can have worse accuracy. The lateral inhibi-

1,eas lipntldell 11t~e~l whichl locates and~ link.- intelnsity tion signal, equivalent to a second derivative, has a zero

,lis~iililcitll i a digitized itmage to stobpixel precisloa. at the step, which can be interpolated through zero with

I'lie discontinufitivs are located anid locali'std bY uitilizing, an accuracy which dcpcnds on the signal to noise ratio.

thie /.eri cro~ssings in the latecrally inhlibite'd imallge of the

diiiadpictti..e. The significance of greater precision is that it

Introduction makes full use of the. inherent information of the signal.

In cases in which thresheoling or gradient operators might

As, has recently been pointed out in earlier work

in the literature (Nevatia k llahu 1078), the effectiveness Lateral Inhibition

of many mnachine vision systems is often limited by the

low level processing that constitutes the first stage of the Like Binford-Horni but uniike the MIT approach,

svsteml. jlpicjtlly, this st~age consists of operations such we convolve the imiage with a square mask of side 2n+1 to

as edgo. deteýctioni, thinning, thresholding, and linking-in yield the local average intensity (over the 2n + I x 2n+ - I

other words- line finding, area) and subtract this aver age from the intensity of the

pixel at the centre of the square. TIhe resulting intensity

Given this current, state of the art and the inspira- is the laterally inhibited value of the image at the central

lion of earlie~r M11" work (Binford-l-lorn 1972, Ilinford pixel. An example of this is presented in Figure 2 using

1970, llcrskovitz X& Binford 1970), we have undertaken the as input the imnage shown in Figure 1. It, is this Value that

task of seeking anl improve e~ient to this stage of vision sys- is used for location of the zero crossings. In the process

tenis. Trhe processing reported here, a simplification of the of calculating the later ally inhibited inipge , linear inten-I Ifimiford-Ilorn apiproach, drWiTers markedly from rmost sys- sity functions (including the special case of ,,he constant

telfls reported inl the litcriture but has similarities to somec function) are mapped into dhe zero value. An intensity

current. Ml I' ystems (M-arr & Illildreth 1979, G.iimson discontinuity is characterised by values that rise/fall to a

1980). Like the MIT systems of fBinford-Ilorn and Marr- maximium over n pixels, a switch -1o a maximium of thec

1 hlldreth, 0111 System~ first applies lateral inhibition to the opposite sign, and a fall/risc to zvro again over n pixels.

imniage, then follows this step by detecting significant signal Atog ti osbet ovleteiaewt
fromgraien mailihde conras), nd fnaly lcalzes masks that utilise more than a central pixel, say a 2x2

the step by %ero-crossing of the lateral inhibition signal.
or a 3x3 central window, from which the local average
(the 2n -4- k average) is subtracted, we have limited our

Operatorq such as Nevatia avid 110mb are essen0 investigation to the use of at single cenltral pixel. It yields

tially gradient operators. TPhe gradient. has a broad miax-

ililn aila edge. Suech operators require at thinniiing a good result for the cases studied Cod therewllb

1)oesor a p~ruce.ssq of 1ma;ximumiii selection, with degraded As is to be expected, when two discuntinuitie-: are

rcsojiot,ion. 'Illheslioldirig, too, haslegiadled reisvlution separated by less than the. mask dimensionthrwilb

from that demonstrated hevre (11inford 8I). Intensities are interference which will result iii locational errors. While
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A Lockheed L1011 parked at the Nan 1,1uneisco Airport
Figuire I

ta small iuask will minimize this effect, it will be mole
sensitive to noise. and the errors induced by it,

Discontinuity Point Detection Dkcontinuity Point Linking

It is the zero crossing that occurs during the switch The zero poiuts or zero crossings of the laterally in-
from one maxilna to the other that is the zero crossing of hibited image were linked together over a mesh of dimen-
interest since this zero corresponds to the location of the sion equal to a single pixel separation. Decisions on 'he
discoutinuity, linking were based upon the intensity values of the corners

of the mesh which were four pixel Tralues. Use of measuredFor the case of ubtracting the value of the single picture noise as a threshold to reject spurous crossing
central pixel from the local average, this switch from peak was accompanied by the simultancoua rejection of interi-
t,) veak occxiri over a 2 pixel interval. 1 i" 'he location of sity continuities that marked the edges of shadows. In
the zeCo of this switch that is the zero crossing of intecest. an effort to overcome this problem and improve rejection

bteThe exact posiio of the crossing was taken to of satellite crossings resulting Iront the lateral inhibitionThlinearly interpolated position bctwcen the pixels process a structure filter was added. This filter examines
obtained using the values of intelsity on either side~ of the the twelve intensiy points art und the four of the centralcrossing. 

mesh ani rejects zero crossings that are of extent less ',nan
four pixels. The filter did not pass points unless they

Zero point crossings were calculated in both the belonged to trajectories Lhat exted from the 3 x 3 pixel
homrznntal and vertical directions for the procQs.ed image. area containiag the central mesh.
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'The resultt of applying lateral inhibition to Fisgure I
Figure 2

Results

A zero crossing was dceemed to occur along t~he edge

of a mesh if one corn,' of the mesh edge was above zero Figure 1 (512 x 512 x 8 bits) depicts an aeroplane
and the other corner was below zero these 2 corner values onl a runway. We have chosen this picture to illustrate our

were then used to calculate location along the cdge of m~eth~od since results on this image have been presented

the crossing. Intramesh points were established using the elsewhe~c in the literature and it contains many objects

average of the four corner points as the value at the center of interest for this type of' processing.

of the mesh. The position or thc 7,ero crossing was then Tersl foeaigo hsiaewt

calclatd t li bewee th cenre oin an on ofthe 5 lateral inhibition operator yields the image presented in
corner points.fiue2

co inti the fact that a zero crossing point is on2 ofWhnteercosiginFue2hangao-

a cotinoustrajectory of such points, the decision as to We h eocosn. nFgr aigacn

which points must be joined can easily be deter mined. i is fmr hn nest nt aefudadlne
it i asume tht th cacultedvale fo th -. nte of We obtain an outline figure for the laterally inhibited
it s asune~ltha th cacultedvale fr te rnte of image. Such a figure produced in this way is presented

the mesh is accurate at leaast in so far as to whether or not i iue3
it is above or below the zero value, this informahtion can i iue3

be used to separate two trajectories that pass through a By expansion of windows of Figure 3, we can il-

sin~gle pixel. An example or this is to be found in Figure lwt;*rnte the precision of our method. These expansions
5. are~ presented in Figures 4 & 5.

28

- - _- ' ' ... .... . . . ... ...



a 64 120 1i2 256 :V2M 334 440S • , IJ I -. -

"V"

S4 46 I 'c

values.•,. ."• Data ,,r Lokhe doum nt in iae tha t -. 'As, •the reut shw .ouv prcssn produce rathe.r",.

wing spn f e, ad "
t'.•:he . ... • .. ,, , .. . _ wing s.o' .... .,hd .The ,s

ti s i " m. A c m o t ' enhancing t f so

then is the -ratio of tht hand side of, the image. Im

was one of th fomrmdl.Ti rslIol ugs

Lt.at. , planesco except for, perhaps, some voerys of erator.

se ia cass, beesl itngie n dntirfieid tsin Fomar thcacuacpoareiscuson andh rcnc esltsionn.ohe
rhesut btach iqued bypoted hehopre se.e heree with knohiqun curnlIviali ieaue

wing~~~~~~~~~~~~~~~e spnthmdl 1 10 n 20 s4.5 n ht ipoed results ove thosenfl that havbend bTaincdl using)

thewingspanfomodel -500 is50.08, m orall models .other methods. The stru e f

talsani 182m onein measure.. •,., of.- the..accura,,cy- enacn the. fine. strucure tbe .o,-. nthemiddl

th t boei .49an 0.437 esecivl.• U i 'ng • poach .are ben puse.'..:• r.-"
exaddiae o the wid.n tail .,•.•' tips, such as shown' For•. a\. compa),,• 'risn f hereuls hon-er.wt

towti6 % W a hrfr conclue tha the. image.. Arnold , -I-• (197) fo the,•.- edesota,',siga luc
in Fiue5 ai f043 a bandwihare te ehd sn h aeimgasipteeBok
wit te frs.rtiowihi ,<-.n with the seon rat ,io (1979)" for re.. ults using th .... " ti-- Bautcniu n

col ecp for, pehas some very,• " • , :',l. •
be eas'ly:, ditngiedaddntfe usn Fo.. r., . . ,'T co prio wit reet.euts-ig te

here,• images and techniques' currently avai"lable"in' the"literatur',

•l~i.4--see the.resultsof"Rosenfeld. (1979) and Tavkol- (1980).

.,r "- '•-• -'..• ,- " ""•\ ¢•--.": -",.'" .- !29- :



M~ C' 
I-fib -;

""'m 
-J 

i

""19 118'1 Of a *1WU-of'g

0 1 C,

P, vpanzsio'n of a window of Piq'ur7e 8 128z12,
Figure

30i



We are currently extending this work to provide 1970 Berskovits, A. & BIafomd, T.O.

improved 'real picture' data for some of the other image "On Boundary Detecton"

processing projects being studied in our laboratory such NOT A[ Memo 182

as Arnold's stereo work, ACRONYM (Brooks 1979), and 1972 Horm, B.KýP.
"The Binford-Horn Edge Flvndks'*

Lowe's work on geometric modeling (these Proceedings). 'T AI neo - de e
MIT Al Memo 2f15
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MULTI-RESOLUrION PIXEL LINKING
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ABSTRACT

When an image is smoothed using small blocks or These remarks suggest that it might be prefer-
neighborhoods, the results may be somewhat unreliable able to perform smoothing and sezlentation con-
due to the effects of noise on small samples. When currently, using some type .,f cooperative process.
larger blocks are used, the samples become more re- An example is the combined uJmoothing and neighbor
liable, but they are more likely to be mixed, since linking process defined in [l]. Here weights are
a large block will often not be contained in a single assigned to the links between a pixel and its
region of the image. A compromise approach is to use neighbors based on their similarity; the image is
several block sizes, representing versions of the smoothed by weighted averuging of each ,ixel with
image at several resolutions, and to carry out the its highost-wpighted neighbors; concurrently, the
smoothing by means of a cooperative pro-teas based weights are adjusted as the similarities between
on links between blocks of adjacent sizes. These neighbors change. T1'- process is iterated, with
links define "block trees" which segment the image wei..ghted averagir- and weight adjustment alternat-
into regions, not necessarily connected, over which ing. Note that this process does not irvolve class-
smoothing takes place. In this paper, a number of Ification of the pixelt, but does yield a segmenta-
variations on the basic block linking approach are tton of the image into regions based on the connect-
investigated, and some tentative conclusions are ednes- relation defined by the links, if we threshold
drawn regarding preferred methods of ioitializing their weights.
the process and of defining the links, yielding
improvements over the originally proposed method. This paper deals with another approach to con-

current smoochine and segmentation based on linking,
using versions of the image at different resolucions

INTRODUCTION and defining links between overlapping "pixels" at
successive resolutiono. In a low-resolution image,

Suppose that an image is composed of a few types the pixels interior to regions have gray levels f
of regions each having approximately constant gray that are less noisy, since a pixel at low resolu-
oegel.in prichhavine approimately cnbestamente gry tiun represents an average and is thus less vari-
level. In principle, the imrge can be segmented into able. On the other hand, the lower the resolution,these regions by gray level theoholding, i.e., by the less likelý it is that a pixel is contained

ieach pixel gayccdin to the intervl in which in a s±ngle region; most pixels will overlap two
ing eahpxlaccordng toteitervaln whcn or more regions. The appro~ach, conaýde.-od Foere,its gray level lies. However, if the image is noisy, which was first described In [2], takes advantage
this pixel-by-pixel segmentation process may make of both high and low resolutions by using a coop..
many errors, since the noise will cause some of the erative process in which the images of auccessive
pixels belonging to one type of region to have gray
levels lying in the intervals corresponding to another resolutions interact. A detailmd description of

this approach will be given in Section 2. A n.,mber
typ smentai cu boe more reliae of variations on the multilevel approach have been
first somothed the image to reduce its noisiness,.netgtd novn cagsi h ntaiinvestigated, involving changes in the initiali-

An image can be smoothed by local averaging, i.e., zation of the process, the method of defining links,
and the iteration sequencing; these arc described

averaging the gray level of each pixel with the gray in Section 3.
levels of a set of its neighbors. However, this pro-
cess will blur the boundaries between the regions, MULTIRESOLUTION PIXEL LINKING
s.ncE a ptxel near ouch a boundary has neighbors
lying in both its own region and the adjacent region. Let the size of the origivai image by 2 n by 2 n.
If we knew which neigh'ors belonged to the saae
regions as the pixel, we could use only these neigh- To define the reduced-resolution versions of the

bars in the average. In other words, the quality image, we make use of ar exponentially t -perin
of the smoothing pro"ess would be improved if we pyramid" of arrays of sizen 2n, by 2 n- , 2n-I by
could first segment the imagae into the appropriate 2n-2,... 4 by 4, 2 by 2, so that the kth levei has

co t segmottheing c d bhe aperform iaten size 2n-k by 2n-k. To avoid border effects, allregions, so that smoothing could be performed within thsarysreegdda clcaycoe,

the regions only, not across their borders. i.e,, the first
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right of the last colUmn, and the top row below the To see hc,ý ii pro -so worko, let us define
bottom row. The elements of each arcay will be the base of a vwI.e as t' set of pixelu that are
called pLxels or nodes. Many different schemes linked (*throuv% as many s rme.!te utsges as
can Le defined for constructing such pyramids 13], necessary) to .hnt r -. Thus initially the base
but in our experiments we used only the simple of every node fi a gquire block of pisels. If the
scheme that will now be described, base of a node Initially lI;* taostly Jnside a

region, the node is most lj'elv to become linked
We will assign gray levels to the nodes at each to nodes on the level below that rtse lie (mostly)

level (k>O) by taking (weighted) averages of the gray in that region; thus its rec-mituted ovarage will
levels of 4-by-4 blocks of nodes at the level below become closer to the regioa average. As the pro-
it. The blocks corresponding to adjacent nodes cess is iterated, nodes at relatively high levels
overlap by 50%; this is why the reduction in size acquire values that approach the average values of

from level to level is by a factor of 2, not a regions, even though the- are too large to fit into
factor of 4. For example, suppose node (i,j) at a region. Slight initial biases in the node average3
level k>. corresponds tc the block of nodes at high levels will result in high-level nodes being

driven toward values that correspond cloaely with
(u,u) (u+l,v) (u+2,v) (u+3,v) the averages of regions or sets of similar regions

(u,v-l) (u+l,v-l) (u+2,v-l) (u+3,v-l) in the image. For furthe: discussion of the process,
see [2].

(u,v-2) (u+',v-2) (u-+2,v-2) (u+3,v-2)

(u,v-3) (u+l,v-3) (ut+2,v-3) (u+3,v-3) Supposed that there are not more than four types
of regions in the image. Fur each type, there should

at level k-i (where (u,v) - (7i-l,2j+l)). Then node be at least one node at the top level of the pyramid

(i+l,j) corresponds to the block whose average converges to the average gray level
of the regions of that type. This node will be

(u+2,v) (u+,v) (u+4,v) (u+5,v) llinked to nodes which are linked to nodes ... which
are linked to the pixels belonging to these regions.

(u+2,v-1) (u+3,v-1) (u+4,v-1) (u+5,v-1) In other words, this node becomes the root of a
'u+2,v-2) (u+3,v-2) (u+4,v-2) (u+5,v-2) tree whose leaves are the pixels that lie in regions

of the given type. If there are fewer than four types
(u+2,v-3) (u+3,v-3) (u+4,v-3) (u+5,v-3) of regions, there may be two such trees corresponding-

to the same region type, representing different sub-
where cli additions and subtractions are modulo 2 k-1. sets of the pixels in these regions. If we know how
It is easily seen that atty node (u,v) below the top many region types there are supposed to be, we can
level (i.e., k<n-1) belongs to four blocks cori-es- suppress some of the nodes at the top level (i.e.,
ponding to nodes on tha level above it - in our forbid anyone to link to them), keeping only vs many
example, the nodes (i.J),(i-l,j),(L,1+l), and top-level nodes as there are types. [Alternatively,
(i-lj+l). [Note that only for the last c! these we can "merge" some of the top-level nodes together,
nodes does (cv) belon' to the center 2-L7-2 portion averaging cogether their values and using this average
of its block; for the other three, (u,v) is a border as the value for each ot them.] In this way, we can
point of their Llc.cks.) The level k-1 nodes in che insure that the number of trees (having distinet
block corresponding to a given node at level k vill values) is the same as the desired number of region
be called its sons, and the level k nodes to whose types.
blocks a given node at level k-i belongs will be
called its fathers. Thus every node at level > 0 In summary, the iterative linking and averaging
has 16 sots, and every node at lev-Žl < n-1 has four process is defined as follows:
fathers. Note that since there are only 16 nodes
at lavel n-2, each of them is a son of all four a) Iiiti&lize the node values by simple block
nodes at level n-l, so that every node in the pyr&- averaging oa each node's 16 sons
mid is a descendent of every one of these "top" nodes. b) Link each node to that one of its foitr

fathers whose value is closent to its own
The node linking process is as follot's: tne

reduced resolution images are initially defined by c) Yecompute the node values by averaging the
unueighted averaging of the gray levels in each values of only those sons that are linked
block. Vhe gray 'evel of each node is then ccmpared to the node
with the levels of its four fathers, and a link dsestahliahed between the node and its most similar d) Change thae links in accordence with ftese

father, i.e., the [ather whose level is closest to new values

the nude's lmvel. After this has been done at every e) Repeat steps ýc-d) as many times as desired.
level, we recompute the gray level of each father by Typically, there is little change sfter the
averaging only those sons that art linked to it. first few iterations, and there is no change
(If no sons are 'inked to a father, we give it "gray at ell after 10 or 15 iterations.
level" zero.) hased on these new aver,•ges, a node's
most similar father may have changed, so wS next At any stage of this process, the links define a
changi the links as necessary, then recompute the set of (up to four) trees rooted at the top level
averages, theai change the links again, and so on. of the p'ramid, ard te associate with each pixel
Tyllcally, this process stabilizes after a few itera- tha ialue at the root of its tree. Thus the proc(..ss
tions. smooths the Image to an extreme degree, giving ea:h
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pixel its tree average as a smoothed gray level. seems to give better results is to tni-
At the same time, it segirents the image into (up tialize 0ý averaging the values for only
to four) sabasts, where each subset consists of four of the sons, namely those whose posi-
the pixels which are the leaves of one of the trees. tions in the image are closest to that of

the node. (The position of a node is
The smoothing and segmentation accomplished by understood to be at the center of its

this process can be compared with those achieved by block.) Note that in this alternative
the pixel linking process of (i]. In [I] the scheme, the initial averages are all
links are all at the pixel level, and the smoothing nonoverlapping.
ib local. Even if the link strengths all convergeO
to values of 1 (withia a region) and 0 (between b) Father selection. In the method of [2]
regions), many iterations would be required to each node is linked to the father closest
obtain the global average of each region at each in value to the node. A more general idea
pixel of the region, since it takes 0 (region dia- is to take into account both closeness in
meter) iterations for information to propagate value End closeness in position. We can
across the region. In the process desciibed here, compute link merits based on a formula
on the other hand, the links are between levels, such as A(D+s), choosing the father for
anO information can propagate "across" a region in which A(D+s) is smallest, where A is the
0 (lo, ceSion diameter) ite atl.cii, •ince nodes com- difference in value, D is the Euclidean
parable in size to the region aLe oa2y (log region distance between positions, qnd a is a
diameter) levels above th! pi.l . evul. Moreover, parameter which is used to vary the effect

in our process, smoothing Lan t •4 place even over of the D coitribution (for large s, differ-
sets of nton-connected regions .he game type, ences in D have little effect).
whereas the process of [1] can smooth only within
a connected region, b') Ties. If two fathers have the same link

merits, we resolve the tie based on any
The concept of linking each node with Its most arbitrary or4eriog of the fathers, e.g.,

similar father may be compared with the smoothing NW, NE, SE, SW. The choice of this order-
processes described in [4-6], where a ret of neigh- ing should not significantly affect the
borhoods lying on various sides of a pixel are results.
examinad, and the pixel's value is replaced by the
average of the least variable of these neighbor- c) Sqeqenu.nA. In [2], links are determined
hoods (since this neighborhood presumably lies for all levels; then averages are recom-
almost entirely within the pixel's region). Using puted for all levels; and this procesn is
the most similar neighborhood (i.e., -:: one whose repeated. An alternative is to iterate
average is closest to the ,)ixel'• g. , Ievel), level by level: as soon as the links from
rather than the least variable neighborhood, would the nodes at level h are redefined, the
probably work well too; but we could not use the average's at level k+l are recomputed, and

least variable neighborhood in our RuheAe. In the _In.s from level k+l are then redefined
any event, the methods of [4.61 use neighborhoods based on these new averages.
of orly a kingle size, which limits the speed with
which the smoothing cat. propagate, as discussel in u• Tood•_ss. The number (z 4) of nodes
the previous paragraph. used at the top level should 6e the same as

the desired number of region. types - 2 foi
VARIATIrONS the tark and chrim.;aories, 3 fcr the blood-

ce!13. We can insure that onY.y two OL thcee
In the experiments described in this section, nodes at the top level are used by initial-

several varirtions on the basic pyramid linking izing the valuer of the remaining node(s)
process were tried. These variations were con- to a very high number, thus insurir.g that
cerned with how to iuitLaliae the node values; how no nodes will ever lank to them. As a
to choose the father to which a node is linked, refinement, ve can fix the top-level nodes
and in particular, what to do in case of ties; that we do vae to have values that repre-
and how the iteration process is sequenced. In cent ettimates of che e-xected region
the following paragraphs we 'escribe the varia- averages; ve will show scme examples using
tions, and then show the results obtained by using tbis variation. We will also show examples
combinations of these variations on a standard of results obtained when we uwe al). four
set of images (which were also used ýtt [2]): an nodes at the top level, even though the
infrared image of a tank, a portion of a blood desired number of region ty;ies is less
smear, -nd a portion of a -.hromosome spread. These than four. As we shall see, the process
imagett are show•. in Figure 1 (a-c). All results then tends to create roaewhat artificial
are shu#n for a stage at which the iteration pro- discriminr.ations within the regions.
cess ht,s stabilized; this is usually after about
10 iterations. We first show the resudts ubtained when we

'ice the desired number of nodes at the Lop level,
a) Initiailzation. In the method used in 2], but do nut attempt to set the values of those

the value of each node was inicialized by nodes to the expected re3ion averag,.-. Figure 2
averaging tha values of all 16 tif its sons. (ý.op ýwo rns) shows there reoults for the iour
An altcrnative .hi'Vh (%b we shall see) combinations of iniialization and sequencing
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Sschemes 'We see that in the chromosome case cell. and tank images (the tank region splits up
(Figure 2c), four-son initialization gives better into "noisy" subregions in various ways, but
results; when 16-eon initialization is used, some does not get badly confuted with the background).
of the small chromosomes are lost, probably be- Thus these results support the conclusions derired
cause too much of the background is initially from Figure 2.
averaged with them, so that they link to a top-
level node whose value converges to the back- When the process is applied to a perfectly
ground value rather than to the chromosome value, regular input pattern such as a checkerboard, it
The initialization scheme has little effect on breaks down and fails to segment the pattern intothe results for the other two images, and the two region types, unless ties are broken randomly.

iteration sequencing scheme has little ef'ect on Figure 5 shows results analogous to those in
any of i-he images. The order used for tie-breaking Figure 4 (left column corresponds to Fig. 4 top
also has little effect, as we see from the bottom left, and right column to bottom right), but
left pictures in Figurc 2 (which use the same using random tie-breaking: the results are quite
initializatiou and oa'iuencing schemes as the top similar.
left pictures). Finally, the bottom right pictures
in Figure 2 show what happens when we give some The smoothing effect of the process as we
weight to Euclidean distance (s-5) in choosing follow the links from level to level can be
the links (otherwise, same as top- left); note assessed by constructing h 4 stograms corresponding
that this too improves the results in the chromo- to each level's view of the image. Suppose that,
some case, and has little effect in the other for a given k, we give ecch pixel a gray level
twu cases. It seems from these results that equal to the value of the node at level k to whizh
four-son initialization is preferable to 16-son it is linked. When we do this for k-0, 1, 2, .,

initialization, And ihat it way also be prefer- we obtain a sequence of successively smoother and
able to Live some weight to Euclidean distance in si.mplei images, whose histograms become successively
cho.o-.ir.g links; but the other variations make lit- more spiky, until finally, the histogram obtained
tie difference. Tha exact shapes of the tank from the top level consists of Cat most) four
and cell nucleus are somewhat sensitive to varia- spikes. Such histograms for the three images,
tions because the ccrrect links for blocks near the after one iteration of the linking and reaveraging
borders of these regions will be somewhat ambi- process, are shown in Figure 6 for levels 0, 1,
guous, due tc. the noisiness or texturedness of 2, 3, 4. (16-son initialization was used, and
the regions. links were chosen based on value similarity only).

If we did not want to rely on the iterative pro-
Figure 3 shows analogous results when the cess to converge to a good segmentation, we could

top-level nodes are given estimates of the aver- still consider u%ing a single iteration of the
age region gray levels as fixed values. &gain, process to improve the separation of tLle histogram
the variations make little difference for the peaks, so that segmentation by thresholding based
tank and tell images, but they are significant for on the histogram would be easier.
the chromosome image. The loss of the small chro-
mosome has now become dependent on the iteration CONCLUDING REKARKS
seque.ace and ever, on the tie-breaking order (!);
and when we use the four-son initialization method, This paper has investigated a number of varia-
a large chromosome is lo3t (t). Apparently, tions on the basic pyramid linking process. The
attempting to fix the values of the top-leval nodes results suggest the following tentative conclusions:
as equal to the estimated region averages can
actually degrade the performance of che pyramid a) It appears to be preferable to use 3chemes
linking procuss. in which some weight is given to t~a rela-

tivy positions of nodes, both in i. itial-
Figure 4 gives analogous results when all for izin3 their values and in choosing links,

top-level nodes are used, so that the process tries especially in cases involving regions that
to find four region types in each image.* The consist of many small connected components.
':esulting artifacts arr especially apparent for Apparently, when we take relativa posie-
the chromosome Image, where the background gets tioas irtto account, we have a better chance
segmented iato three subregions that differ appre- of preserving the integrity of small regions.
ciably in average gray level. Here again, when
we use 1-son init:.alization, the small chromosomes b) It is desirable to specify the desired num-
tecome part of the backgwo-.tud, but this does not ber of region types (i.e., pixel classes),
happen when four-gou ;nitialization is used, nor by allowing only that number of nodes at
wh.n weight Is given to %uclldean disteoce In the top level. to be "active." Otherwise,
chiosing links. The other varlations have little the process tene.s to split some of the
effect, and all of the nffecta are zainor for the classes artificially. On the other hand,

using estimates of the average gray levels
*If the Input i.age contains fewer than four gray of the classes to fix the values of the
levels (e.g., ii we threohold the cbromusome or nodes at the top level may degrade the
tank image into two levels or the cell image into results, parhaps because it introduces
three), the p.'cess does not create additional premature biases that are not compatible
values, eveiN though all four top-level nodes are with the early stages of the linking pattern.
used.
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c) The process is relatively insensitive to the
sequencinig of the iterations and to the
node ordering used for breaking ties.

The experiments reported in this paper have led
to a betteo understanding of the pyramid linking
concept. The conclusions will serve as guide-
lines in the design of linking processes based on
pixel properties other than (average) gray level,
for application to the smoothing and segmentation
of multispectral or textured images.

REFERENCES

i. J. 0. Eklundh and A. Rosenfeld, Image smoothing
oased en neighbor linking, IEEET-PAMIJ3, 1981,
in press.

2. P. burt, T. H. Hong, and A. Rosenfeld, Seg-
mentation and estimation of image region
properties through cooperative hierarchical
computation, TR-927, Computar Vision Labora-
tory, Computer Science Center, University
of Maryland, College Park, MD, August 1980.

3. P. J. Burt, Fast hierarchical correlations with
Gaussian-like kernels, TR-860, Computer Vision
Laboratory, Computer Science Center, Univer-
sity of Marylahu, College Park, MD, January
1980.

4. F. Tomita and S. Tsuji, Extraction of multi-
ple regions by smoothing in selected neigh-
borhoods, IEEET-SMC 7, 1977, 107-109.

5, M. Nagao and T. Mutsuyama, Edge preserving
smoothing, Computer GraDhics Image Processsing
9, 1979, 394-407.

6. R. M. Haralick and L. Watson, A facet model
for image data, Proc. PRIP 79, 489-497.

' |• I

(a) (b) (c)

Figure 1. The three images used in the experiments: Figure 2. Effects of varying the initialization,
a) tank. b) blood cells, c) chromosomes, sequencing, tie-breaking rule, and link-

ing criterion (see text).

36



Figure 3. Analogous to Figure 2, but initializing Figure 4. Analogous to Figurr 2, but using all four
the top-level nodes with estimates of nodes at the top Level.
the region averages.
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Figure 5. Analogous to the top left and bottom
right pictures in Figure 2, but breaking

ties randomly.
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THE INTERPRETATION OF GEOMETRIC STRUCTURE
FROM IMAGE BOUNDARIES

David G. Lowe and Thomas 0. Dinford

Artificial Intelligence Laboratory, Computer Science Department
Stanfbrd University, Stanford, California 94305

Abstract use of these constraints is of great importance for the inter-

bud pretation of real data and general classes of images. MostSGeneral constraints on the interpretation of image bound-
Geneal onsraits o th inerpetaton f iageprevious attempts at boundary interpretation have used con-

aries are described and implemented. We illustrate the use nevioas themai sourcero information ha we haeSancclivity as the main source of information, whereas we have
of these constraints to carry out geometric interpretation of
imagaes up to the volumetric level. A general coincidence as- placed at least as much emphasis on shape, size and lora-

tion. We also make some use of the intensity contrast acrosssumpionis sed o driv sugeslve ut ncomlet iner- boundaries. Our implementation of these constraints is de.
pretations for local features. A reasoning system is described
which can use these suggestive hypotheses to derive consis- signed so that no single constraint is taken to be absolute,
tent global interpretations, while maintaining the ability to and the system can therefore tolerate some errors and in-
remove the implications of hypotheses which are disproved completeness in its initial data,It is important to realiz,ý that there is seldom a unique
in the face of further evidence. An import.ant aspect of inter-
pretation is the classification of image boundaries (intensity interpretation for any local image property. All of the con-

discont.inaitie-. into those caused by geometric, reflectance, straints which we use are in the form of coincidence assum-
or illumination discontinuities. These interact with other tion3, in which sone property suggests a paiticu~ar inter-
hypotheses regardivj1 occlusion by solid objects, the direc- pretation unless some set ," coincidences (or crrors in theStion of illuniiration, aspects of object geometry, and the data) have occurred. This means that our reasoning can no6production of illumination diasoptinuities by geometric dis- hbe strictly deductivw and monotonic (as was, for example,the constraint system used by Waltz [71), since we must makecontinuities. Although only a sunbset of the conscraints and and use

system design features have beedi implemented to date, we hyp~theses while retaining the option of having fur-
demonstrate the successful int,'rt'retation of some simulated ther information prove them false. Tbercfore, an important
image boundaries up to the volametric level, including the aspect of this work on image interpretation has been the de-

velopment of a reasoning system which can operate cleanlyand efficiently with these incomplete constraints. On ',he

other hand, the search space for this problem is not large,
since most of the constraints have a small branching factor
and there is typically much redundant, information available

Introduction in support of an interpretation.

This paper describes work in progress on the deriva- We categorize image in'bensity discontinuities into three
tion and use of general constraints on the interpretation distinct classes: those ct~used by disco,.tinuities in the
of image curves (also known as intensity discontinuities or geometry of an object (edges), in the relectance of an ob-
lines). These constraints are derived from general assump- ject (markings), and in the illumination (shadows). The con-
tions regarding illumination, object geometry, and the im- str,-ints on each of these categories are quite different, and
aging process, and are carried out to the level of three- much of the discussion in this paper will deal with the recog-
dimensional volume interpretations. This work is being nition and separate implications of these different classes of
done in the context of the ACRONYM vision system 121, image curves.
and is expected to interface closely with the higher levels
of ACt.ONYM, which make interpretations from generic ob- Reasoning on the basis of coincidence assumptions
ject models. The current implementation of these con- As mentioned above, the use of incomplete constraints
straints in an independent computer program is described forces us to use a non-monotonic reasoning system, in which
and demonstrated. further evidence can disprove a previously held hypothesis.

Much of the previous work on the interpretation of Therefore, the method of deducti we have chosen has
image lines has concentrated on the constraints imposed on been to form an explicit symboli( epresentation of each
boundary junctions by certain classes of'geometric objects hypothesis, and to maintain a record of its support and
[3, 5, 6, 71. We believe that there are more general con- implications so that it can be reevaluated and undone if new
straints on the formation of image boundaries, and that the contextual evidence indicates that the original hypothesis
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was false. Each hypothesis has pointers to all the hypotheseB rnaiiitainaiice of constraints is much better- than the use of

and types of evidence which have given support to it, as well backtracking for testing hypotheses, since it is not limited

As pointers to the hypotheses which it .oupportit. to the !ast-in-lirsit-out order of testing typically enforced by

Figure I shows the data structure representation for a a backtracking stack, and any results apply to the entire

typical hypothesis (in this example the hypothesia is that problem space.

a particular curve represents a geornetric edge causing oc- The coincidence assumnptions could sometimes be used

clusion on a specific side). T1he hypothosis in this example to measure the likelihood that. a given coincidence will oc-

is supported by evidence front several other hypotheses cur, and therefore be used to compute a probabilistic degree

(representetý in the EvIDK.NCE blot) and makes use or three of conflidence in a hypothesis. However, these probabili3ticI
bscconstraints (to he elescribtd in detail inthe follow- Mesrscnbe c.-xtremei-- contetdpnn admyvr

ing section): that the geometric discontinuity corresponds to widlely from image to im -ig, in ways that can not be known

an intensity discontinuity in the im~age, that the Occlusion before the imnage is interpreted (ie., %,he probabilities cannot

is suggested by the termination of atiothe.: geometric edge reasonaiibly be assumed to be independent). The combina-

at this geometric edge, and that this edge casts a certain Lion of probabih~ty values niay no of importance in some

slIA-1oW. The SUGGESTS slot of the drata structure points to eases for spe.-ding up the analysis, by telling us what to

all hypotheses which are based at least it- part on this o.je. examine first, but we have made no &.ttempt to use thems

When conflicting interpretations are suggested for some in our current systein. When some consistent overall in-

part of the image, the evidence for each interpretation is rlratohsbenoudfraimgtresuuly
evalate toseeif oe iterrett~o is trog eoug to much re'!uidant information available in support of the in-

excluide the other. If there is iusufficient informaution to terpretation and there i- -. leed to -hoose 1Lotwcen alter-

make this dlecision, thenu both hypotheses are pursued until natives on the 1,asis of explicit probabilities, Our set of

there is. When a previously odld hypothesis is thought to hpree e~bcte"lc~or"fr fhptei

be false, its implications are undone and any further resultV repiesentation [4[ in many ways; however, we ittempt. to

propagated. Tlhis non-coinmital type of reasoning appears resolve conflicts by pursuing eacti possihiht nlpudu

to be flexible and easy to use. The major difficulty E; LAsat rather than by combiaing probability estimates, and we

this requires that special code be written to evaluate and Ma-itain the explicit history of each hypothesis in sym~bolic

resolve cadl. type Of conflict that could occur, but we are formn.

looking A other possihle resolution scemiues. The explicit

WEvidence:EvdneSues:

Figurest 1: Rpenaoofhylpothesis.
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Constwalnts on the interpretation of Image curves terminates at a continuous curve (a T junction), the ter-
minating curve cannot be closer to the observer than the

This section describes a series of general constraints on continuous curve; otherwise, it wou~d be a coincidence that
the three-space interpretation of image lines. In each case the termination happened to occur on the other line. The T
we attempt to describe the specific coincidences which would junction could be the result of three different occurrences:
lead to alternate interpretations. Many of these constraints occlusion of the terminating edge by a geometric bound-
are developed in more detail in ([1. ary, the termination of a surface marking at the visible

In a certain trivial sense, any of the imnage features edge of a geometric object, oek a specific set of surface mark-
described in the following constraints could bu the result ings. Therefore, if we know that the terminating curve is a
entirely of reflectance discontinuities rather than geometric geometric boundary, then we can infer that the continuous

or illumination discontinuities, since the image could be a curve is also a geometric boundary and we know its direc-
picture of a picture. However, interpretations which are tion of occlusion. If we know that the continuous curve is a
consistent with solid geometry and illumination are un- geometric boundary occluding on the side of the terminating
likely to arise frorn surface markings, except when those curve, then we can infkr that the terminating curve must, be
markings have been specifically designed to correspond to a surface marking. If we know that the terminating curve is
images of geometric objects. Therefore, we treat surface a shadow, then we can infer that the continuous curve is a
markings which have consistent geometric interpretations as non-concave geometric boundary (if it was concave we would
coincidences which are hypothesized only when given other sef a continuation of the shadow from the same ver'tex).

evidence. 4) Crossing of continuous curves. When two continuous
The "carves" described ia the following constraints aie curves cross one another (an X junction), this is an indicator

assumed to separate regions of different intensities. Regionn of either an illumination discontinuity, transparency, or U1
which are too narrow to have a measurable width ("wires" or uwusual combination of surface markings, since the curve
thin lines marked on a surface), although often repreaented closest to the observer does not occlude either side of the
as ordinary lines in a line drawing, are locally different fromn other (note that we are assuming other local evidence for
other types of curves in a digitized image and are local- wires, as mentioned al-ove). If one of the curves is an
ized by different criteria [see 1]. They should be treated as illumination discontinuity (shadow boundary) this implies
thin occluding regions, even though the precise width of the that the other curve lies on the same surface and is not a

regions may not be accurately known. If we wish to inter- geometric boundary, since othcrwise a break would occur
pret lin! drawings in which there is no distinction locally (as wi!l be discussed further below).
between thin regions and boundaries separating regions of 5) Contrast across shadow edges. The contrast across a
differen', intensities, then the following constraints can be shadow edge is equal to the ratio of direct to indirect light,
easily modified to incorporate this possibility, which remains fairly constant across an image for a dis-

* 1) Tanjent discontinuities in curves. Breaks in an image taut light source. However, the situation is complicated

curve (also known as tangent discontinuities or corners) are ny the presence of reflections From nearby objects, which

important for the same reason that intensity discontinuities can considerably increase the amount of indirect illumina-

arc impo-tant in an image: they are features which can be tion. A stronger constrailit is that the contrast ratio along

sharply localized, and can therefore lead to more restrictive the length of a shadow will change only smoothly and in-

constraints than more diffuse features. Two-dimensional dependently from the surface on which it falls, so that as

breaks in an image curve are closely related to breaks in the shadow curve crosses different reflectance boundaries

three-dirmensional space curves: in fact, a smooth space (or even crosses illumination boundaries cast by secondary
curve cannot have a break in its image. Likewise, a break in sources of illumination) there will be the same contrast ratio
a space ,.rve will result in a break in its image, unless there on both sides of the boundary. This is a valuable constraint
is a coin ,doence in which the observer is coplanar with the for identifying shadow lines. In the case of the X junction
two tangents. The situation is the same for a cast shadow: mentioned above in (4), the illumination discontinuity will

there will be a break in the shadow cast by a geometric edge have the same contrast ratio on both sides -of the junction,
which contains a break, unless the source of illumination is and can therefore be distinguished from the other curve ar
coincidentally coplanar with the two tangents of the break. the X junction, barring coincidence. In color imagery, the

ratios of illumination at each wavelength across a shadow
2) Straight Iincs. An image line which is straight must boundary should be fairly constant and vary only smoothly
be the image of a straight space curve, unless the curve is the length of the shadow, and could therefore provide
planar and the observer is coincidentally aligned with the ang
plane of curvature. Likewise, a straight shadow curve in the budr ilb le hntesni ieo ~a a)an even stronger constraint (eg. the dark side of a shadowplan ofcurvtur. Lkewie, staigh shdowcurv inthe boundary will be bluer than the sunlit side on a z~ear day).
image must have been cast by a straight geometric boundary
onto a p!anar surface, unless the source of illumination is 6) Shadow breaks caused by geometric breaks. As men-

coincidentally in the plane of curvature of the geometric tioned in (1), barring coincidence, breaks (tangent discon-

boundary or the observer is in the plane of curvature of the tinuities) in geometric edges are observable as breaks in

shrdow curve, image lines, and geometric edges with breaks cast shadows
with breaks. Therefore, given a known direction of illumina-

3) Termination at a continuous curve. When an image curve tion, the geometric break causing any particular shadow
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break is constrained to lie in a precise direction. This con- stereo information.
straiut is so strotg that the mere existence of a break in the 8) Junctions of two or more discontinuous curves. Whens
given direction is support for the hypothcsis of a shadow. If two or more curves terminate at the same junction, it

the direction of illumination is unkiown, then almost paral- would be a co' cidence if the observei were aligned so that

lel sets of m at ching Z r-ak6 be t ween hypot hesived shadovvs separated vertices in space landed at the same point in the
and oliher iniage lines providle eviden~ce for the hypothesis image. Therefore, for L,, Y, K, or higlher-order junctions, it

of tie direction of illumination (it can usually be Assumed is reasonable to hypothesize that coincidence in the image

that the source of illumin'wtion is moderately distant from implies coincihence in space. In other words, knowing con-
at least soma parts of an image). straints on the 3-space location of the endpoint of any of the

In perspective imagery there is an illumination convet- ternminating curves gives us the Fname constraints on the 3-

gence point in d.ie image through which the images of all space locations of the other endpoints at the vertex. When
illumination rays fromii a point .:ource pass (this is ',rue even a shadow curve terminates at a Y or higher-ord'r junction.

for nearby point sources). The location of this point can be we can assume that one of the other terminating curves is

determined from any set of two or more matches between a geometric edgre casting this shadow onto a surface passing

shadow and geometric breaks. If the point source is in front through the junction (otherwise it would be a coincidence
of the caniera lens plane, then the convergence point is of that the shadow happened to pass throutgh the junction).
course the location of the image of the point source. If
the lig!ht sorce is bchindl thc caniera lens plane, then the 9) P-opagatiot. of direction of occlusion. When the direction

illuai'nation convergence point is located at, the point of of occlusion is known for a geometric, boundary (ic., we

projection of the light source onmo the tihn plane through know wh•ich of the surfaces on either side the edge belongs
the projective cent~er of the camera, and |,he illouination to), then aoy unambiguous ciutinuations of the geometric
stheroeacstiverdthis roint rather than away from it. If boundary will have '.he ,ame direction of occlusion. As long

the point saurce is exactly in the lens plane ot owa carera, as the curve is continuous we assume continuity in space,
then the perspective effect compensates for divergence from

the light source to make the illumination convergence point 10) Surface continuity. We assume smoothness and con-

infinitely far off, so all images of illumination rays are ex- tinuity of surfaces when there is no intensity discontinuity
actly parallel (these insights are dlue to Sid Liebes). in the image. If an int.ensity discontiumiy on a surface is due

It, should be noted that breaks in shadow curves can also to a geometric discontinuity of the surface, then we would

be caused by the intersection of shadows cast by different expect to see a discontitmity in thc geometric boundary of

objects, so it cannot be assumed that there is a geometric the surface wheum it iut;.rsected this intensity discontinuity

break corresponding to every shadow break. The constraints (unless the observer is in the plant! of the two tangents at

given here could be extended to cover discontinuities in cur- the boundary).
vature and other shape properties as well as diiscontinuities Knowing the direction of occlusion (from 3,7,9, etc.)

in ta.igents, although these are more difficult to implement allows us to form surface descriptions by looking at the

computationally. regions bounded by geometric boundaries. In many cases

7) Casting of shadow curves oy geometric edges. Given it is possible to form surface descriptions by merely follow-

one or more matches betweon shadow breaks and geometric ing the continuations of geometric boundaries around the

breaks it is easy to determine which geometric edg, 're extent of the surface, until they are possibly occluded by

casting which shardow edges. An iaportant constra another surface. Another technique is to work away from the

that each point on the shadow edge must correspont. occluding side of a geometric boundary, ignoring illumina-

some point on the geometric edge in the direction toward tion and reflectance discontinuities, until either an oppos-

or away from the illumination vanishing point, although all ing geometric bouadary is found or an occluding geometric

parts oi the geomet:ic edge may not be observable (say, object is found Note that. this is different than the usual

if it is occluded by anjother object). Once a match has region segmentation of images, since we are doing it in the

been hypothesized between a shadow edge and a geometric geometric domain. Thest can be difficult constraints to

edge, many impoitant inferences follow: tile casting curve implement computationally, since they deal with properties

is known to be a geometric edge or limb with the direction of entire surfaces rather than just a curve. Our current im-

of occlusion depending on the direction of contrast across ple-nentation handles only some of the more common cases

the shadow edge. If the geometric edge is straight then any of surface description.

curvature in the shadow curve is due to curvature in the 11) Alignment of image curves. When two straight lines are

surface on which it is cast. Likewise, if the shadow surface aligned in an image (even though they may be separated by

is known to be planar, the curva!ture of the shadow can be a gap of a considerable distan~ce), they must also be aligned

used to calculate the curvature of the casting edge. The in space, or else the lines must be parallel and the observer

ir,-age separation of the casting curve from the shadow can must be coincidentally in the plane of the two lines. This

be used to calculate their relative range fromn the camera, as constraint allow, us, for example, to hypothesize continuity

will be described later. Shadows essentially provide a second of line segments oo both sides of an occluding object. This

projection of the object geometry, in addition to the original constraint can be extended to deal with the alignment of cir-

image, and can therefore be used in much the same way as cular arcs, elliptical curves, repetitive textures, symmetries,
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and any shapes which are predicted from hypotheses and the same spot. When using real data it may be useful to

knowledge of the imaged object. This constraint can also hypothesize extensions of curves which do not terminate at

be used to bridge gaps in curves due to errors in the curve a vertex.
detection proce.s or insuflicient contrait actoss some part of A weakness of the current system is its control struc-
a boundary. This is an important arva for further research. ture, Currently, most of the hypothesis generation proceeds

12) Prediction of illumination boundaries. If we have in a fairly fixed order, with the most reliable type, of
formed hypotheses of the geometry of an object, the s'r- evidence being examined first. liowever, we are in the

rounding surfaces, and the direction of illumlination, then process of creating a miore flexible control structure using a

we can predict the locations of illmiluination discontimuities generalized agenda for ordering constraint propagation. The
in the irmage, and thereby produce new hypotheses for image conflict resolution mechanism also requires further work be-

lines at these locations, as well as confirm or contradict our fore it can be applied to all the different types of conflicts

original hypotheses. Prediction of this sort can also be used which could occur.

to check consistency of surface occlusion. In spite of the incomplete state of the current system,
it is able to carry out detailed interpretations from simu-

Since we are attempting to derive three-dimensional lated curve data as showa in Figures 2 through 10. Figure
structure from image clues, the constraints above all deal 2 shows the original picture taken over San Francisco air-
with image features which are quasi-invariant with resp~ect port from which the curve data in Figure 3 was derived
to viewpoint (eg., a curve break in thre-•-space produces by hand. This data also specifies the approximate contrast
an image curve with a break ovir a wide range of view- across edges. In deriving this curve data we referred to data
ing conditions, evwn though the angle of the break is not derived automatically by curve detection programs, and we
invariant). The higher levels of A(,RONYM produce predic- believe data of at least this quality will soon be available.
tions of quasi-invariants from specific object nmodels, and We have also input the location of the sun, although we
these sliould interface well with the more general constraints hope to soon be able to derive the illumination direction(s)
described above, automatically from the image. Figure 4 contains a circle

The list given above is far from complete. We are over the, location of each hypothesis corresponding to the
particularly interested in developing new constraints for in- unambiguous continuatiou of a curve boundary (constraint
fering the cross sections and v loutne descriptions for the 8 of the previous section). It also shows the places at which
geometric objects in an ima* Many other image fea- the input routines segmented the curve data. Figure 5 shows
tures (such as parallelism) are only slightly less invariant the hypotheses regarding curve terminations at a continuous
with respect to viewpoint, and should also be included in a curve (constraint 3).
general system. Figure 6 shows a dotted line at the match between

each hypothesized shadow discontinuity and its correspond-
An lm'splementation ing edge discontinuity in the sun direction. This makes a

YVe have written a preliminary version of a computer small amount of .,se of the input data regarding the con-
pm ogram which implements the hypothesis formation sys- trast across curves (constraint 5), but the major support
tern and many of the constraints described above, This pro- for a shadow hypothesis is the existence of one of these
grain has been tested on simulated image curve data derived shadow matches (constraint 6). We expect to be able to

by hand from a real image, with the encouraging results use tighter tolerances when using automatically generated
described below. We are ir the process of implementing data than were used with this simulated data, with cor-
more constraints, and hope to soon test the program on respondingly better results. Figure 7 shows curves which
data derived automatically from inmages by curve detection have been hypothesized to be shadows as dotted lines, and
programs being written here at Stanford. The program has also the hypothesized connections between shadow lines and
been implemented if'. MAGLISP on a DEC K(L-10, using the the geometric edges which cast them (constraint 7). These
record package alle .ACRONYM environment created by Rod hypotheses were formed from the evidence of Figure 6 in
Brooks 12). All of ie constraints we currently use are comn- combination with other projective constraints mentioned in
putationally incx ":nsive, and the hypothesis formation for the previous section and hypotheses regarding which edges
the example giin ii on the following pages took less than 2 constituted geometric boundaries. The success of this tech-
seconds of corn pc ;er time. nique can be shown in the closeup view of the tail section

The initial curve data is translated into a set of "curve in Figure 8, in which the complicated outline of the shadow
hypotheses" in order to initialize the hypothesis generation is correctly interpreted as the intersection of shadows from
proces.ý. Each curve is represented as a series of points several different geometric edges. Further hypotheses are
with tLe tangent of the curve given at each point, and also formed regarding the planarity of regions, and their
cubic splines are assumed as the method of interpolating direction of occlusion.
fcr intermediate points. All curves are indexed in a grid From the results nf this interpretive process, it is pos-
array tinder all grid squares through which they pass, and sible to construct three-dimensional Models of the scene.
it is therefore economical to search image neighborhoods The shadow tc curve matches provide information on the
for curve features. During input, each curve termination relative distance of each geometric edge and saladow surface
is linked to other curves which terminate or pass through from the camera. Even if the sun position is not known, all
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itiFI'g 2 Original digitized image Fig 3 Hand derived curve data used as input.

Fig 4 Hypotheses for boundary continuity. Fig 5 Terminations at continuous curves.

Fig 6 Hypothesized shadow breaks cut by edge breaks. Fig 7 Match of shadow- to geometric edges.
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Fig 8 Closeup view of tail section shadow hypotheses. Fig 9 Three-space model of geom ic ructu~e.

Fig \0R t,, viw O heszedthre-driesiol po,_-ýrl z-ic~reI
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tmoasuremaents are correct relative to some constant factor sources of information.
aad c(an 1 made absolute by knowing the correct measure- Shadows are not troublesome features to be removed
,rent for any one part of the imnge. Figures 9 and 10 show from an image, but are in fmct one of the most reliable
different views of such a model generated automatically from sources of low-level information. While some of our con-
the hypotheses described above. Some of the minor errors in siraints on shado,;'• depend on properties of the sun and
this mcdil are actually artifacts of the display system rather assume a known locatiwn of thu light murce, we believe
thun being present in the actual hypotheses. The position that human perception in general makes use of the more
of the camera with respect to the ground was given to the qualitative aspects of our constiaints on the 4iterpretation
modeling system, but thi- could be deduced from thi. image of illumination. In particular, the behavior of illumination
if the orientution of any image object with respec, to the boundaries as they cross surface markings and geometric

ground was known. With our digitized data it was impos- boundaries and terminate at g..oinetric vertices pro fides a
sible o see into shadows on the ground because of digitiaug great deal of ;nformation evei; ' r uuknown conuitons 01
limitations, even though this information was availeble in illumination. The identificLtion u, ilumination boundaries
the original negative. Interpretation would have been easier can be carried out at a low level by noting .he width of
with more complete data boundary transitions, constraints on contrast rlanges along

There is much more information available from the a shadow edge, and. the crossing of continuous carves.
c'rrve data bhan we have us'd in this example, and we hope
to have bette• results soou. It is fairly eavy to aeduce the Acknowledgements
depth of objects suspended above the ground from the posi-
ion of shadows whirh me cast underneath them, and we Our task would have been much more difficult without

expect to be able to infer the vrosg.-secticus of objects in the extensive sybsemi and graphics featuves created by Rod

many cz&,se from other clues. The interaction of these in- Brooks during his work oa ACRONYM. Sid Liebes has helped

terpretations with knowledge of the specific objects in the us work out the geometry of perspective imagery and shadow

scene 's an important area for exploration, formation.
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More weakly localizable information, such as shad-
ing, intensity, and color, while being very importnnt, is
usu.4ly dependent on other assumptions regarding surface
coutinvity. We believe that it io valuable to first examine the
intensity disrontinuities and carry out iate'precntion similar
to tbat, described here as a step towards using these other
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RELATIVE DEPTH AND LOCAL SURFACE OKIFNTATION FROM IMAGE MOTIONS

K, Prazdny

Computer Vis'Žn Laboratory, Comput-r Science Center
University of Maryland, College 'ark, MD 20742

ABSTRACT 1 . INTRO1,UCTION

A simple mathematical formalism is presented Optical flow is 1.he distribution of angular

suggesting a mechanism for computing relative .elocities oI" projecting rays due t. rslata ,

depth of any two texture elements characterized motion rf objets with respect to the observer.

by the same relative motion parameters. The Conceptually, o\itical flows undoubtedly carry a .'

method is based on a ratio of a function of the wealth of inforr.tior. about the spatial Arrangement

angular velocities of the projecting rays sorra- of the ";-iewed scerze, and normnent psychoiogiats

sponding to the two texture elements. The angu- ouch as Gibson (1950), 1979) have argued forcefully-,I

lar velocity of a ray cannot, however, be com- for the p-.ý*dominant v:ole of this information in

puted directly from the instantaneous charccteri- human visiog. Discontinuities in .:he distribution

zation of motion of a "retinal" point. It is of argular velocities have been showr to directly

shown how it can be obtained from the (li.aear) corcespond to occluding (or self-oc:cluding) edges

velocity of the image element on the projection (Nakayamp. and Loomis, 1974). Corresponding dia-

surface and the first time derivative of its continuities i, "retitial" motions thus offer posýer.-

direction vector. A similar anclys~s produce? ful informarion tor segmentation: pu.rposes. Sose

a set of equations which directly yield local recent wc.k hae illuminated sr~e of the relation-

surface orientation relative to a given "isual ships between variabies directly iLvzlved in the

direction. The variables involved are scalur formation of optical florn (Koinde•ink end van

quantities directly measurable on thfý projection Doom, 1975, 191(, 1977! Longuet-Viggiw9 and

surface but, inlike the case of relative depth, Prazdny. 1980; Prezdny, 1980).
:'•ithe direction of (instantaneous) motion has to. beSThe purpose of this .paper is to pxesent a

computed by different means before the method can rathematical anaiys~s of aome relztionv containing
thedirctin o (istataeou) mtio ha tobeThe~aia purpose of thi opaer isltionprsentainn

be applied. The relative merits of the two for- in'ormatlon about spatial dispocitione oý a set

malisma are briefly discussed. of texture elemtnte. Using tha concept o: polar

iprojection as the model for the physical t•,tgt-

forming pr,%cesa we show Chat the relative de,\ith

"of two texture eleeentit von ;de computed as a

The support of the Detense Advanced Research Pro- simple ratio. The entigies iavolved are tbe av.u-

jects Agency and the U S. Arr.y Night Vision Labo- lar velocities of the rays throvph the texture

ratory under Contract DMG-53-76-C-OI38 (DARPA elements and the center of projection, and the"ord 6 gratefully acknowledged, as i the visual directions of the rays, which are unit

help of Janet Salzaan in preparing this paper. vectors specifying the directions of thc ray6 in

I
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some egocentric reference frame centered at the For the moment, it suftices to note that the eque-

center ol prejection. We shc'i that the angular t ion Q-A~xQ does not determine A u-niquely; it only

velocity at an iisa~e loc~ation can be obtained CO'istrains A to lie in the plane a normal of which

fcor the image velocity vector and Its first t0me is (see Figitre 8 for further explanation).

deriv&etive at that: locus.
The w~tions of Lhe object ar~d/or the observer

A sliphtly differeat Lfldlysis requiring an a are clat1.ve., i.e. , we car, on! y resolvc the motion

priori knowledgte ý.f the directior vector oif the of the object relatii'e to the observer (or vice

translatory component )t t'ne relative motion verrba). The (instantaneous) motion of an object

leads to an interesating characteri?.ation of with respect to the observer (in the reference

iloceX .urface orieata.-ion. frame in which the observer is stationary) can

Underlying oer researcb :;he. interprnitation always be described AS a r,)t~ation (with Liome angu-

of image motions is the assauoption that (an lar velocity A:R) superimposed on a translation

app,.-oxivation to) the velocity vectors associated specified by a vectnr v.. The axis of rotation can

withindvidal iageeleent canbe btanedbe chosen, Koithout loss of generality, to pass
with reindvuable iagery Soemen caent re otiedic through the center of projection (Chasl~es' theorem)

iegndin th coputtio ot retnal veociie~ to remove thu ambiguity, (Whittaker, 1944). The

dir-t~ fr~n he mag hrghte~s vaues(Ra~ni total (Iine~.r) veloct.ty of an environmental point

et al., 1580; uron, and Sc~iuncyr, 1980) supports p (with position vector P) is then V.-v+AxP. An

this assumotiqn. Other promising support comes equivalent expression in terms of the angular velo-

from the restarch on discrete solutions to the ct ftepoetn a Pi

correspondence problem (Ullman, 1979; Barnar~d and (1) A,--A-

Thompson, 1980)) whicE relies oa matching various where t, is the a,..gular velocity due to the trans-

Fighx-lvel a~g "toen"atruturs. ation alone, and 4is the rotational componentj

(note thac the value~s of A and v specify relative
2. THE AASIC IMAGE FORMING GEC>NVT?. moti~on, and not, in any sense, the actual 3D motion

To begin, let u6 first consider motions of of the object). The simplicity of equation (1)

the projccting rays iad~pe-idertly of any parti- res.ults from the fact that angular velocities about

cular projection surface. Refer to Figure 1. A a common point add vectorialJly (Weatherburn, 1965).

taxcure 3lement i? projects, along Lhe r.ýy OP, into Observe that iRdoes t.ot vary from point to point

the image element Q ov the unit sphaere centered at on a rigiA body; it is a properti of t.ýe body as

thf- center (,z pro~jection, 0. As the object moves a whole aad independent of distance or visual

relntive to tne obse-ver, the ray OP (Instanta- direction. AT~, co the other han4, is a function

n.2ously) rotates abov.t an axia through 0 ca'iiing of visual direction and the ýiistance of the tax-

the image olaement q to tracn a patb (T3) on the tune element to the center of projection (see

unit ophere. belowi). Of these two component fields, only &A j
Consde~ a nitvecor .det~eiingthecarries information aliout relative. distance. We

direction :)f the rdy 0P at a given instunt will not derive an expression for A,. here. The

~4ot t?. Iteveloity s ddt(Q..'Q Q s pe- tader is referred, for eyxomple, to Nakayama rnd

pendic'ilv. to Q, As the ray moves with angular Loomla (1974) or Prazdny (1 980) for- a detail~ed

velocity A, Q moves along T3 v'itb (linear) velu- dircussion. Briefly, when the object traknclatr,.

city Qv'. The two vaioc~i-es are related by relative to the observer, individual rayc of

~j~x', ate wewil sho ho th veociy ~proijection all, move in, the same plane (differe:kt
of a ~mee el~nt n th proectin p1 anefor different rays). Ti*e direction of k, is

reltus t te vlo i.y Q f-untvco normal to this plane Lepanned by the. vectors v and
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Q.The magnitude of Ais equal to dO/dt wN~r" a~ a se't of non-linear equations whose -oefficients

is the angle between the direction oý t!.analation are the velocity vector compoaents of at least~

and the given ray (see Fgi~rc 2N. AL is thei. griven five neighboring imagA elements (1Prazciny, IS80),
by oi ase the first and aecnnd apati.al ~ier1.vatives

(2) AT-da/dt (vxQ/sin(aý>v/s 'vxQ) of the injecae velocity field to obtaiti enougii

iný.nto to sol,)c- for 4 nd v. di.rertly as an
where S-!01-1Iis the distance of a given textOL: integral sten in computir~g the local surfaze orl.-

elrment, to the center oý projecýtioa. entat;-on (1.onquet.-Hig.3ins and Prazdny, 1980). *

The. observation tLar enabl.es us to dcrive an ex- Ullwcan's scheiae (Ulltman, 1979), which uses ortt"'j-

pvtosslon for the relative depth of anyr twc texture gonal projection and relies on a th.orenm from.

pointA M:x'irg In the same way relative to the obser- affine gaometry (the structure-1from-motion theorer.

ver concerns equation /1). Consider any two points <Note I>) use,3 not only spatial informatin-n (mu-

Pi.t on the same object -NIote 2>-. From equation tuai position of a s:?t of Ii~lge elements) but alsoS(1) it foil-wa that temporal i-ifoimation (the relative position of a

(3) A~~Ari~ an A~=A 44. ~given image elem~ent in succe~.sive snapshots) toL

recover the .otation of the configurarion priLor to

We see that because 4 is the same for tha tw'-, che computatim'. of rclativs- depth [scan Meiri

[points it cancels out when the angular velocities (1980) fo-.- some coa-ments on the nusmber of image

are su~jtraý:ted: points and snspehota. neeet~spry to solve for the

(t.) Aj-Ai-A-AT- .. A. rel,,ti-ve motion parameters]. Of course, the

ij -i jassumption oi or" hogonal. projection wo~rks only fr:

Usin3 (2) and soibstituting wa obtei4i some situations.

(5) A. -- >(kiQis -k In conltrait, equation (6) above vnly requirasI; her k v/S. W fom te aala ?r~iut o ~that the angular v*.1locities (Ai A ) at two visual
sids I wih ~it~~Q. o btindirections Qi be !niown. Unfortunately, thn

- - angular velocity at a "retinal" locus cannot be

I -- j i i -- i icomputed from tno information available at that
This is because the scalar triple urtduct invoiv- locus at an instant. The equation v'wA:.Q d~as not

ing one vector twike it always~ zero. We set a,. specify A uniquely (see also Figure 8). The angu-IJQ , ud :ubst4.tute back intv (5): lar velo::ty of a ray through ain image point can

(7) a / .3/Sbe obt-ained ott1y when~ some additional. Information

I isaiai~bP_.We shcw that i.t can he computed

Ln o~he wodsthereltiv deph o a-ýy wo henthevector specifying Lhe time rute of i-hange

poins hvin thesam reatie moionparmetes i th (1irection of the "retinal" velocity is

v u t)is computable as a simple ratio. Ol,- avai3.abe.[

A.Lcabecomputed idpnetyorlavetive) motion of a etr lmn, th ay p-i
moio-,Tha.-s a simple but Important finding. fied by the direction vector Qý rotates about 0 so

mathmatial frmaismsfor tm-that Q moves oa the surface of the uhit .qrncre
puting surface orientation or 3D otructure from wihsmLeoiyv-. T idteisatno~

notino o theprojetction sraedpn ipl
In~~~~pln ofa (6)tio doe not invlv Is orv1lafiT se Den to apply~

j~~~v. ~citly or explicitly) or computing the rotatioaal paeo oaimo ti vfcett pl
a few concepts foelmnaydiffer'intial go

thereltie mtio frst(e~.,metry. 0Oboerve thu~t v' , the uuit vsctoý- in the

Ullmsan, 1979; Longuet-Higgins a~nd Prazdny, 1980; dieto _L ,i h ui agn otept

-i r~~razdny, 1980). To ohtain ~,one bas to solve atQ hsmas htvL si ~ed.etcno



the principal normal of Q. Together, v' and v'Q/(sin(X)-v'ccs(X)). We will refer to this

v' span the plane on which lies the circle of equation as the "radial projection equation."

curvature at Q. In other words, the plane a normal Next we will establish a rather surprising fact

of which is v'x v' (this vector lies in the direc- about the relation between the velocity of a point

tion of the binormal vector at Q) is the plane of and the velocity of its projection. We will first

instantaneous rotation of Q, and A, the angular consider, for simplicity, only planar motions,

velocity vector of Q, must lie in the direction of but the relation holds for space motions too (see

this vector. Observe that here we bring in temporal below). Consider Figure 6. Suppose that the point

information to obtain the angular velocity vector. 'a' moves along a circular trajectory C so that its

Other kinds of additional information are possible. distance to 0 remains unchanged. The (infinitesi-

In the next section we show, for completeness, how mal) displacement is dco. The displacement of the

v' and v' relate to "retinal" variables when the projection of 'a' on i1 is tan(dP). The displace-

projection surface is a plane. Then we analyze a ment of the projection of 'a' on i2 is Qtan(dcp)/

method for computing local surface orientation [sin(X)-cos(k)tan(dm)] (using the radial projection

directly, without computing the relative depth equation). To compute the relation between the velo-

map first. cities on C and 12, we divide by dt and take the

limit as dt0:

3. COMPUTING THE ANGULAR VELOCITY OF A PROJECTION Qtan(d(P)
RAY FROM "RETINAL" VARIABLES ltm Lin(A)-cos(A) tan(dp) dt]

dt-O

In this section we assume that the projection Q

surface is a plane at unit distance from 0. As stn(A)

the projecting ray rotates about 0 with some This is because ((t) Is a continuous function of t,

angular velocity A, Q moves with velocity X' along and lim(tan(x)/x]=l as x-O. This means that when

T3, and _ = Q9, the point at which the ray pierces a point 'a' moves along a path with speed v', its

the projection plane, moves with velocity X" along projection on the line £2 moves with speed

T2 (see Figure 4). Observe alpo that T3 is a (8) v"=Qv'/sin(X)

perspective transformation of T2 and vice versa. In other words, the velocity of the projection of a

For example, if T3 is a circle, T2 could be any point moving along a curve is not the projection

conic section. The exact type of the curve will of the velocity with which the point moves along

depend on the mutual orientation of the plane con- that curve <Note 10>. This relation holds also in

tainig T3 (determined by the direction of the 3D space <Note 4>. Next we will deriýve the equa-

angular velocity vector A) and PP. As mentioned tion which will enable us to express the angular

above, the angular velocity vector A is normal to velocity in terms of the image velocities.

th( instantaneous plane of rotation of the ray OP, Refer to Figure 4. As Q moves along T3, its

i.e.. parallel to the binormal vector. Our first projection 9Q on PP moves along T2 with velocity

task is chus to determine the direction of the (9) vI d/dt(9Q9 L+Q9-Q+Q'

binormal vector associated with the motion of 9. along T2. Observe that v", v, and 9 all lie in the.
First, we express Q-v' in terms of the velocity of same plane <Note 4>. This means, however, that the

the image elerent at a given point, and then we following two vector equations hold simultaneously:

will find the direction of A as the vector product (10) v'x 9&(v"x T)/sin(X) and v'.Q-0
of v' and v'. We will establish a few interesting We can now solve for v' from these two simultaneous

auxiliary relations before proceeding further, vector equations <Note 6> to obtain

Consider Figure 5. The figure illustrates (11) v-x(vX9)/sin(X)csc(A)-cotQOQ

the fact that the projection of a segment with This is the main equation. Note that v' is the

magnitude v' along a perpendicular to a given line unit tangent to T2 at Q. Its first time derivative,

£2 which makes an angle Xwith line £is v" = v', thus lies along the principal normal to T3 at 9.
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Their vector product in turn specifies the direction Here,w i. the angle between A and Q, and cos(w)-4A.q.

of the sought angular velrcity vector A. Differ-

entiating (11) we obtain 4. COMPUTING LOCAL SURFACE ORIENTATION

(12) v'-cec(X)ý'-Xcsc(X)fcos(X)v"-Q1-cot(A)v' In this section, we analyze a method of

Taking the vector product of (12) with v' and using computing local surface orientation relative to a
the relation -X•v-cos(X)(v'×Q) leads tot e . r l given visual direction. A• zateresting recult will

(13) rixv'-csc(X)(V'X v")+X(v' XQ) be that the directions o: angOar velocity vectors

Substituting for v' from (11), for v' from (0), and are not required explicitly. However, we cannot
simplifying, we finally obtains f we finally2obtain) _ obtain something for nothing; the analysis requires

(14) xvQccX v-o()xv+fsc)v"(\ ((an a priori knowledge of the (instantaneous)

Now A=d/dt(X) can be expressed in terms of v" and the direction of notion (the direction of the tran 'ta-
relation between the visual direction Q and the pro-

tory component of the relative motion).
Jection plane PP (its unit normal). Using V'.Qcos(x) First, let us express vectorE in a Cartesian
and differentiating we obtain

Zo. (rectangular) coordinate frame as a function of(15) X=-csc (X)(v" .Q+v" .Q5=-csc(X) (v".Q+V" .v')
two anglesaand 6. Then, for a given visual

However,_v".v'=(v'sin(X)+Qcos(X)).v'-v'sin(X), direction Q(ct,8), we can compute aA/Da and 3A/303.

because v'.Q=O by definition. Substituting for v' Using equation (3), it is easy to see that

from (8) yields S(19) Waal=ýATla and W ý-ATla.
(16) A.-csc(X)(v".Q)=v"sin(X)/Q In other words, the information contained in the
Equations (14) and (16) indicate that the gradient of the angular velocity field in the

direction of the angular velocity vector at a given visual direction is equivalent to the infor-

visual direction Q can be determined completely nation contained in the gradient of its translatory
once the image velocity vector v" at the locus on

-- component. This is not surprising, for as we saw
PP corresponding to the visual direction Q, and above, only the translatory component carries in-

the first time derivative of the direction vector formation about depth relations between the 3D
of ?", are available. The only other quantities texture elements.

entering the equation are Q and X, expressing t:,e Let us find expressions for _AT/a and 8Ata/

metrics of the projective system <Note 6>. and analyze them to see how local surface orienta-

Observe that the direction of the vector v" is
tknown as soon as v" is known. Because T2 is a planar

kn s sn aare chosen such that the vector corresponding to

motion, v" lies in PP, and is perpendicular to v". a -0 and 8-0 specifies the direction of the trans-

Referring to Figure 7, we see that the direction of latory component v, we see that AT does not change

v" v", is specified by v"-cos(q)x + sin(5)y where
as we move c.i the plane a-const. Using this fact

x and y are a set of mutually perpendicular unit
and differentiating (2) with respect to 8 yields

vectors on PP. v" is thus given by

(17) v"-r[-sin(n)x + cos(n)y(
Now, ý -vsin(8)/S (see Figure 2), and aA/la-3a8/a8.

and the magnitude of v' is n. Thus,

Finally, it remains to specify the magnitude of (21) DýlaýXvcos(o)Is-ýs/Sw e
(1 Observe thatAthemagnitu owhere SA, i

A. Observe that A, the magnitude of A, is a function Multiplying both sides by tan(S), and recalling

of the mutual orientation of A and the direction that 8.vsin(B)/S, we see that

vector Q. This is related to the already mentioned tan(85/8-B tan(8) Sb/S so that

fact that v' and Q do not specify A uniquely (see (22) S /S--i/1[A/30]+cot o

Figure 8). Using v'_AxK we see that v'-v'•'-A(Ax ) To derive a similar expression for S /S requires
-Asin(u)v', and from this it follows directly a little more ingenuity. Differentiating equation

that (2) with respect to a yields
(18) A-v'/ain(w)-v"sin(X5)/[Qsin(w)]
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(23) 3AT/3--sin(0) Ev/S] [Sa/S]AT+[v/S](vxQ ) component vectors being tangent to hyperbolas

But we have also through given loci) due to rotation about an axis

(24) _AT/A T - through the center of projection parmllel to the

where X is some vector which does not have to be projection plane, and the other, a circular field

specified in detail (for our purposes). It can be (the component vectors being tangent to circles

seen immediately that with centers at the center of the image coordinate

(25) 1/a=-[S /S~v sin(M)/S system) due to rotation about the normal to theia

and from thl .•.ecified as projection plane. The remaining translational

(26) 6•.ti ' loca/ component would consist of vectors defining the

"The qu'ntitie , and S /S are depth invariant focus of expansion (possibly at infinity) as the

zha--aceizations of (local) surface orientation unique intersection of all straight lines defined

relative to a particular visual direction Q(c, ) by these vectors and the corresponding "retinal"

<Note 8>. In fact, they are directly related to loci. The whole process is essentially a constrained

the gradient of the disthnce. Because of the de- minimalization problem of a function of three

pendence of this specification of local surface variables: the magnitude of the circular component,

orientation on a particular visual direction the direction of the hyperbolic field (specified

(defining the surfaces of constant aand B), two by a single angle), and the magnitude of the hyper-

different surface orientations cannot be directly bolic field (see Figure 11). The constraining

compared. To do so, one could transform one condition is that the straight lines cf the trans-

characterization into another using a simple rota- lational component meet at FOE. Note that such a

tion matrix. It is important to realize that the process, if successful, wotild essentially recover

expressions characterizing the (local) surface the translational as well as the rotational com-

orientation in a pure translatory situation hold ponent of the angular velocity vector A (see

also in a general situation of a curvilinear motion. equation (1)). We are currently trying to solve

L The only prerequisite is (as in the pure trans- this problem Lsing a relaxation scheme. 4Note 9>.

lation case) that the direction of the instantaneous

motion (i.e., the direction of the translatory 5. CONCLUSION
component of the curvilinear motion) is known. In this paper we have shown that the relative

The knowledge of v allows us to define, for each
"retinal" locus, a direction along which a-const.

same way relative to the observer can be computed
By projecting the "retinal" velocity vector into in a simple way from the angular velocities of the

this direction we obtain R, and by differentiating corresponding rays of projection. We have illus-

these "retinal" velocities along the directions
trated how the required angular velocity at a point

a -const. and 13-const. (see Figure 10) we obtain the planar projection surface can easily be

3B/act and Wa/O. on
computed from the (linear) velocity of the image

If this process is to be carried out on the element at that locus, and the first time derive-

projection plane, the best thing to do is to locate tive of its direction vector. We have also shown

the focus of expansion which then determines the that local surface orientation can be obtained

lines a-constant as the lines joining the focus of
rather straightforwardly once the direction of the

expansion and the particular "retinal" locus. The translatory component of the relative motion is

localization of the focus of expansion (FOE) is a
known. The recovery of this direction from the

difficult task. One may try to decompose the image
information contained in the distribution of the

velocity field there into its constituents. The "retinal" vel~ocities is a rather complicate~d task.

rotational component of the angular vwlocity vector

at a given instant can be decomposed ito two image it i: hoped that it may be possible to decompose

velocity fields: one, a hyperbolic field (the the instantaneous velocity field on the projection
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plene into its constituents using a relaxation 7. Koenderink, J. J., van Dorn, A. J., 1976,

process. Some work on this problem is currently in Local structure of movment parallax of theplane. J. Opt. Soc. Am. 66, 717-723.

progress in our laboratory.
8. Koenderink, J. J., van Doorn, A. J., 1977, How

The applicability of the method will depend on an ambulant observer can construct a model of

the accuracy with which the image velocities can the environment from the geometrical structure
of the visual inflow. In Hauske and Butenandt

be obtained. It remains to be specified how these (eds.), Kybornetik, pp. 224-247, Munich:

errors will pr-pagate through the equations and Oldenburg.

affect the accuracy of the computed relative depth 9. Longuet-Higgins, C., Prazdny, K., 1980, The

and local, surface orientation, interpretation of a moving retinal image.
Proc. R. Soc. London B-208, 385-397.

The computation of relative depth ond local
10. Meiri, A. Z., 1980, On monocular perception of

surface orientation were presented as two distinct 3-D moving objects. IEEE Transactions on Pat-

processes. This does not have to be so. Local tern Analysis and Machine Intelligence PAMI-2,
582-583.

surface orientation may be obtained from a relative
depth map, for example, by simply fitting a plane 11. Prazdny, K., 1980, Egomotion and relative depth

map from optical flow. Biol. Cybernetics 36,

zo a set of relative depth values in a given (snall) 87-102.

neighborhood. I believe I.hat the relative depth 12. Weatherburn, C. E., 1965, Elementary Vector

map is practically a much more useful conrtruct than Analysis. London: Bell & Sons.

local surface orientation. Because the available 13. Whittaker, F. T., 1944, A treatise on the

data are noisy, the computation of local surface Analytical Dynamics of Particles and Rigid

orientation relying on quentities obtained in a Bodies. New York: Dover.

small neighborhood of a "retinal" point is likely

to be affected much more than the relative depth of NOTES

two widely separated points, where the two anigular <Note 1>

velocities :an be obtained much more precisely, The following notation is used through the paper.

e.g., by averaging over a small neighborhood. If v is a vector then V is a unit vector in its

direction, and v is the magnitude of v. The scalar

REFERENCES product is denoted by ".", and the vector pro-

1. Clocksin, W. F., 1980, Perception of surface duct by "x". All velocities, position vectors, and
slant and edge labels from optical flow: a the associated quautities are functions of time.
computational approach. Perception 9, 253-267. I

This is assumel implicitly throughout the paper.

2. Hadani, I., Ishai, G., Gur, M., 1980, Visual 4 and 4 denote the tie derivatives, as usual.
stability and space perception In monocular
vision. J. Opt. Soc. An. 70, 60-65. Angular velocities are vectors perpendicular to

the plane of (instantaneous) rotation, with magni-
3. Horn, B. K. P., Schunck, B. 0., 1980, Detextin-

ing optical flow. MIT Al Memo No. 572, Massachu- tude equal to angular speed (radians/sec).
setts Institute of Technology.

<Note 2>

4. Gibson, J. J., 1950, The perception cf the Visual The texture elements can be on two different objeztsWorld. Boston: Houghton-Mifflin. as long as the objects rove in the same way relatively

5. Gibson, J. J., 1979, The Ecological Approach to to the observer (i.e., have the samev and AAR). Thus,
Visual Perception. Boston: Houghton-Miffl~n.

for example, in the stationary world where the ob-

6, Koenderink, J. J., van Doorn, A. J., 1975, server is the only moving agent, the relative depth
invariant properties of the motion parallax

field due to the movement of rigid bodies rel- of all texture elements can be recovered using the

ative to an observer. Optica Acta 22, 772-791. present method.
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<Note 3> may all meet at an (ideal) point at infinity. It

The structure-from-motion theorem states that the is rather difficult to incorporate this condition

relative depth of four non-coplanar points is into a nicely behaving criterion functtin.

recoverable from three non-degenerate orthographic <Note 10,-

projections. The mutual orientation of the pro- This result is intuitively rather surprising. It

jection -planes has to be determined before the actual follows directly, however, from the definition of

relativ•, depth of the four points can be computed. the angular velocity (see Figure 2).

The recovery of the mutual orientation of the pro-

jectton planes is an integral part of the schema.
<Note 4>

To see this, note that v!6d/dt(Q)Q=+ýQQ

Now 71,-' and v'.Q&0. Thus v"X3..Q(v'X.,, i.e., v ,

v", and Q all lie in the same plane. Settinp W to

be the unit normal of this plane, we have v'XQ-v'w;
bui: also v_"iýv"sin(X)'1 (see Figure 4). Thus

n-(v'X&)/v'-(v"X'Q)/v"sin(X). Substituting for

y'XQ we obtain (v'XQ)/v'-Q(y.'XQ)/v"sinM) and so

v'-v"sin(M)/Q, as s'ated in (8).

<Note 5>

A set of vector equation of the form

X X A-B and X.C-p

where A.C 0 0, has a general solution X-(pA+CX)/(A.C).

<Note 6>

Given the unit normal i defining the projection piane

PP, these quantities are computable easily as

Q-l/(Q.i), and X is given by cos(X)-(Q.v").

<Note 7>

As can be seen in Figure 9, XT is the same for all

Q(a,•) on the plane a-const.; it is the dnit normal

of this plane. It follows directly that IWT - 0.

<Note 8> 
- 0.

Expressions similar to (22) and (26) were also in-

dependently obtained by Clocksin (1980) using a

different approach.

<Note 9-

W•rile the problem is conceptually rather simple,

there are some difficulties relating to the form-

ulation of the criterion function to be minimized.

The difficulty is related to the fact that the

projection plane is an augmented Euclidean plane,

in terms of projective geometry. For example,

the translational vector components on the plane
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-. I

Figure 1. A texture point P projects into a point Q on the unit
sphere. The directiDn vector of the projectinj ray OP is determined
by the two angles, a, the meridian, and 86 the eccentricity; the
vector Q is a function oa a and a. The plane a-O and the direction
(a=O,a=O) are arbitrary, but it is advantageous for the future
i-inalysis to choose them so that the principal x-axis coincides with
the direction vector of the translatory motion component.

p
-Vsin/3

V-V f

0
Figure 2. The angular velocity of a ray due to a pure translation.
The angular speed is defined as dB/it, i.e., as the projection of
v on the perpendicular to the ray, d.\Xided by the distance S.
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Figure 3. To compute the direction of the angular velocity vector
of the ray specified by the visual direction (, observe that Q moves
'cnra 3D path on the surface of the unit sphere) witb velocity
v'IQ. Because v' is the unit tangent to this path, V lies in the
Nirection of the principal normal to the path at U. The unit bi-
normal yector at Q, which is perpendicular to the plane spanned by
v' and W', is parallel to the angular velocity vector A of Q.

Pp
T

- /

77

7.

0 
V

Figure 4. The basic projection geometry. The ray, determined by

its direction vector Q, moves due to the relative motion of the

object with respect to the observer. The point QQ=Q at which it

pierces the planar projection surface, PP, describes a planar trajec-

tory T2. The unit vector Q describes a 3D trajectory T3. The angle

X is the angle between the image velocity v" of Q, the projection

of P onto PP, and the ray OP.
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0

disThe radial projection equation. The displacement v' ont. at unit distance from the center of projection is projected intothe displacement v" on z To compute the relation between vvz~rd v", we n-ote that b/(a+Q)='7; b/v"=sin(X); and a/v"=cos(X). Thusv s')X)=v'v"co~s()+vQ. Finally, v"=v'Q/(sin(X)-vtcos(A)). Ob-serve, that here, vI and v" are finite displacements and not velo-city vectors!
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s, nA-ccask nd-•'

a 1  j,
1 dj/

/

Figure h. The relation between an infinitesimal displacement dY
alona the circle C, and its proiection on the line £2" The speed
at which b. the projectioh. of a-on £2' moves alonq
½2 is not the projection of the speed with which a moves along C.
See text for further explanation.

VV

Figure 7. The direction of v" on PP is determined by an atigie _

The first time derivative of v" has direction perpendicular to v,
and matgnitude ý. x- and -y are a set of mutually perpendicular unit
vectors on the projection plane PP.4
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Figure S. Knowing that th2 point Q (with position vector Q) moves
with some (linear) velocity v does not specify the angular veloci-."-

on the ray OQ. The equation-dvA(i constrains A to ra e in the plan-of which v is a normz.l. Q cou!lý (instantaneou-sly) move on an infinite
number of-possible circles of rotation, only three of them beinq
shown. Observe that A, the magnitude of A, depends
on the angle between Qand Aý (it determine-s the radius of the in-

stantaneous circle of rotation).

V2.gure 9. ATI2QA^AT I •-

/3

r.L_ _0 el

Figure 10. For each given visual direction Q(a,6), the circles

e=const., bconst., and Q itself define a rectangular coordinate
system. Observe that while the condition o=const. defines a plane,
•=const defines a cone with apex at 0! The circles C1 on the
plane and C2 on the cone are mutually perpendicular.1
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PP-

0

Fiuire )I. An image velocity v" (on the planar projection sur-

face PPTof a point Q can be resolved into three compor nts. The

hyperbolic component h is due to the rotation of the ra% about An

axis (through 0) in the projection plane (the angular velocity

is a linear combination of x and y). The circular component c

is due to the rotation of the ray about an axis (through O) paral-

lel to -m. The translational component t is the remaining vector

which constraints the decomposition of V"; t is constrained to be

such that YQ.EPP: (t. intersect in one common point). In the

illusl.rationlabove, tie direction angle of the hyperbolic field

is zero (measured anticlockwise from the x-axis).
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tA:TAi tem oThe work in what can be called structural
texture description has been more limited [6-93.
Maleson (6] used simple regions as the basicA technique to analyze patterns in terms of eleaients and used relations between regions and

individual texture primitives and their spatial shape properties of the region in his analysis.
relationships is described. The technique is Rosenfeld [7] has proposed a texture analysis
applied to natural textures. The descriptions method also based on primitive regions extracted
consist of the primitive sizes and their by a threshold operation. Tamura et al. (8]
repetition pattern if any. The derived tried to develop a set of operators which would
descriptions can be used for recognition or rate textures on several scales, comparable to
reconstruction of the pattern, their ratings by human subjects. The proposals of

Marr [9] for texture analysis based on the primal
INTRODUCTION sketch are similar to some of the analysis which

we perýorm.
Areas of an image are better characterized by

descriptions of their texture than by pure This paper builds on work reported earlier
intensity information. Texture is most easily [10,11] and thus we will only outline the early
described as the pattern of the spatial processing steps. We uill present more detail on
arrangement of different intensities (or colors), determining spatial relations between primitives
The different textures in an image are usually and aeneration of textures from the descriptionls.
very apparent to a hut, an observer, but automatic Finally, we comment on the use of the descriptions
description of these patterns has proved to be for recognition and the computation of texture
very complex. In this research, we are concerned gradients.
with a description of the texture whichcorresponds, in some sense, to a description SYM1BOLIC DESCRIPTIONS
produced by a person looking at the image.

The goal of this work is a description of a
Many statistical textural measures have beer texture pattern based on primitivo elements and

proposed in the past [1-4]. Reference 1 gives a the srotial arrangement of those elements. For
good review of various texture analysis methods, example, I checker board pattern might be
Among the statistical m,.easures which have been described as approximately square elements,
discussed, and used, analysis of generalized alternately light and dark in perpendicular
gray-level co-occurrence matrices [2], analysis of directions. Absolute intensity Lcolor)
edge directions with co-occurrence matrices [3], infornmation is an unreliable feature ror defining
and analysis of the eaces (or micro-edges) in a texture primitives. Instead, we have chosen to
subwindow (A]. The statistical methods, by analyze edge images to initially determined the
themselves, do not px'od•-re descriptions in the structure.
form wiich we desire. Some of the Aneasures may The eage repetition arrays (ERAs) are similar
indicate certain Inderlying structures in the to gray level co-occurrence matrices, but differ
pattern, but do not produce a general description. In many respects. The important feature which we
The Fourier transform has been used to determine wish to xtract is the repetitive nature of the
some structural descriptions but was only teture patterns. This is apparent when a
partially successful for more complex patterns sequence of spacings (e.g. 2-32) is considertd.[5]. Thus the values whicah we wish to compute are how

b&e elements repeat as a fwction of distance for
a given angle.

wfnis research is supported by Defense Advanced We accumulate edge repetition informaior
Rsearch Projects Agency ard is monitored by the (for edges the same direction, ard edges opposite
Wright-Patterson Air Force Base under contract No. directions) for the six edge directions (00, 300,
FJ3615-80-C-108C, DAJPA Order No. 3119. 600, etc.) and for both colors ("light" and
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"dark") and for 3paclngs of 2 to 32 or more. The or there are several different types of elements
data for a particular edge direction are (e.g., three with different intensities) which
accumulated by scanning the image in a di:-ection compose the texture pattern. Therefore, instead
perpendicular to the edge direction. The sns are ot generating texture elements as a first step, km
normalized to give a ;alue whica is the look for texture elements with certain known
probability of a pair of edges of tbe proper p[operties, the properties given in the basic
direction occurring ot the given angle and spacing symbolic description.
when one edge occurs. There are three strong indications of element

Well defined texture pact')rn. prociuce obyvious size provided in the texture description given in
patterns in the ERA, and iL is from these patterns Fig. 2. Knowing the exact locations, within tho
iV the 2RA which we will derive the description of original texture image, where the edge matches
the texture pattern. For example, a regular contributing to these strong peaks occur is
pattern of oark -id light elements will produce an useful. It is then possible to isolate the
edge imag.e uith ragularly spaced edges. The ERA uniform intensity regions or textural elements
for opp•sit.e edge directions will have a peak being measured. Analysis o the set of textural
value at element size and peaks spaced by the elements or primitives for a particular
width of the two elemencs. A pattern created by predominant element size then provides the average
the random arrangement of sirilar elements will intensity, are, shape, etc. for that primitive
not have significant nuLnbors of edge repetitions group.
(for opposite edge dar.ctions) except for the
distance corresponding to the element width - one In Fig. 2, we can see that all of the
relatively large peak zt a small distance and information for a texture is listed according t3
lower values afterward with no other dominant relative element intensity and scan direction.
distance value. In the data for the same edge For ex.-Anple, elements of size 3 and spacing 8
direction the situation is reversed - few occur in the vertical scan direction, and these
repet'tions at small distances and relatively more elements are dark .n relation to their vertical
at larger distances, but no repetitive Atructure neighbors. Since the scan direction and relative
in the data. element intensity of each predominate ale-aent size

is known, the edge pairs e('hibiting the propertics
The symbolic description of the pattern is can be located.

derived from the edge repetition arrays. The
basic technique is summarized below: The points between these pairs of edges serve

as the initial intericr pmints of the texture
1) Find, classify and describe the peaks (local elements. These prai 'tive slices are expanded toI,.aximaj in the ERA's,i.e., c.s strong or weak. form the mask for the particular primitive

elements. The original image And the binary edcje
2) Examine the element spacing (size of pairs of image are both us,.d by the expansion procedure.

elements) data to determine if therE are any The expansion is perendicular to 'ti scam
peaks which repeat - i.e., occur at multiples direction, i.e., if the initial description is tor
of tee first element spacing value, the vertical then the expansion is in the

her izontal directtion.
3) Examine the element size data to determine if

there is support for a spacing value The expanded primitives wit(A'n tha mask image
determined above - i.p., local maxima spaced can then be an~aly•zed t!o detecmlne varietjs
at the given distance, properties of the basic el'dne),L such as all everage

primitive intensity, an averaqe primitive aroa in
4) Apply a set of heuristics, expressed as pixels and the average primitive dtmensiin in the

production rules, to generate the final direction perpendicular to the line of scati.
description.

Resiuts qenerated for the raffia seaople -)f
The description of the texture of Fig. 1 is given Fig. 1 are given in eig. 2. The dark priTdmi;ive
in Fig. 2. found in the vertical sczan direct.or. cor-respo•r•

to bock B in the abstract represenýxotion of the
ESCRPI'TICI OF PRIMITIVES texture pattern given in Fig. 4. The light

primitive found in tioa verical scan direction
T he basic symbolic description outlines in corresponds to block A in Fig. 4 and the lig~it

Section II above is only a start. There remain primitive found by the horizontal scan correspon-s
many problems. There is no indication of tre to block C. The first primitive dimension given
overall shape of the elements, there is no in each of the primitive descriptions i.r. tht
coordination of description from one directi-on dimension along the line of scan, (i.e., the
with descriptions :or other directions, and there direction in which it was described earlier in
Is no way to immediately derive various properties F-g. 2 while the second dimension iW in a
cf the elements. To determine these propertiss we direction perpendicular to the scan line.
must extract all the primitive texture elements Figuroe 5 gives the orirnitive mask images
from the image. Earlier maethods [6)-j made an corresponding to the primitives of types.
atte.apt to extract primitives as the firot step.
But, there are problems when. clemunts are very
small, the intensity levels vary -cross the image
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separating them. Figure 9 gives the computeJ
SPATIAL, REIATIC•S (Jr' 'tii•EL• EL9MlTS results for the two brick patt'.rns. This can

serve as a basis for deucrlpticne or it can be
Up to this point the only description used to reconstruct the texture.

inr- >rmatioti we have relating to the arrangement of
the texture primitives is the element spacing Generation of Patterns
information desc)'ibed In Section Ii. However,
this information pertains to only a single scan One ýndicatiun of the completeness of a
direction. Therefore, we can tel, only if a texture <cescription is the effectiveness the
certain group of primitives in perxodic in one dernript-lon to regenerote the textire pattern.
direction and if so, wlat. period ir exhibited. The decz.riotions given in -:i.j. 9 (and a
When no clement spacing can be found for any of description of each element) can' be used to
the elements within a texture, the texture pattern recreate the original texture patterns. Certain
is assumed tu) be random. in the event that we are assumptions about the pattern are necei:sar'•% it is
considering a non-random texture pattern this a single patte.n (composed of aji the derivrd
spacirg information is not sufficient to elemert types) and the relations betweei elements
characterize the particular pl:3cement rules within of the same type is the same for ill types of
the textire. There is otte; work in the area of elements (i.e., if a grid is found for placing one
describing textures by relationships between element type, the same grid car. be used for all
elements [12,13,14] but these others generally others - with translation).
make more assumptions about the type of input
textureE.. 'The generation process has several st(pj:

Consider the 2 brick patterns •n Fig. 6 (a 1) Patings for relat~ons which are the saire,
and b). These patterns are similar in tUat each eAcept for a 18(P difference in directions,
cnntains lignt and dark elements which are are combined.
rectangular and ate arranged in a regular pattern.
The 3rrangement of the bricks within the patterns 2) T'he highest rated relation for an element with
is different, but no evidence of this difference itself is chosen (marked with "*" in Fig- 9).
is given in their primitive descriptions (see But itself, this gives only a one dimensional
Fig. 7a and b). Both sets of bricks were detected pattern, therefore the second best relation
by scanning vertically, and both exhibit regular must be also used (marked with "*•")
element spacirng in this directicn. However, a Collinear relationis are ignored and the rating.
definitive description of clement arrangement is is dependent on the distance - reiations to
Lacking, This placement information is contained close objects are needed for generation of r.he
in the primitive masks vnd composite images (see pattern. Thus in Fig. 9b tije 150°-30° pair is
Fig. 8), and is the object of analysis described chosen rather than the 1800, 00 pair. These
here. two placement rules define a basic grid for

the pattern (i.e., place an element at each
Determination of Relations grid point).

Individual prim.itiv., masks, Provide the! 3) Select the highest rated relation bet•.en ailocations of all the ep.imitives n f ta particular element already in the grid and one not in the
typ r within an image. De-esmining the predominant grid (marked with "**." in Fig. 9). Put this

placement rules exhibited by these elements can be element into the pattern in the given relation
divided into a nunber o' "ndependent subtasks: to all those already there.

1) Determine whether 2 sets of primitive 4) Continue to 3 for all other elements (the

masks. represent the same textural elements by exanples here have only 2 elpsents, s et 3 or

combining all pairs of masks to calculate overlap. nore are possible).

This situation arises when a textural element is Fig'.re 10 shows the results for these 2detected in more than one scan directior. This pattern I0 the rnssome f the mshoud gie aredced et o prmitiespatterns. Jr. the first pattern some of the mortar
area was detected as a background area and thus

2) Dete~rmine primitive location (centroid) the image was initialized with this value. In the
and compute relations. Rather than computiNg second pattern no back ground was indicated so the
relations by taking all pairs, only the relations unfilled area is black. The small vertical mortar

pieces were not located and thus are not included
to primitives (of any t•.%T) closest to a given in the output pattern.
primitive are considered. The closest ones are
located by looking in 12 directions (300 apart) APPLICAi!IONS AND COq$•YASIONS
from the give- r-rimitive. Totals are kept for
angle, dista,,ice, and the type of pair. We have used these descriptions for

3) Find the predominant relations: r ~cognicion. In some preliminary experiments
Normalized the values to adjuzst f-r numbers of the using a decision tree classifier with .he symbolic
type of primitives. Rep-ace ý11 M-ints above a descriptions, all the test samples were corrctly
tyre onf byiithe s. n oeplteir 3x3 points boveh a identified. This was a test using a s-nall number
trin d by~ predeinath su loal theira. This neig d, a of samples (it works with large areas, notFind ,:h,: predominate local maxims. This giveg a
paiL of primitives and an angle and distance individual pixels) and a small set of texture
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types, but it does provide an indication of the Thesis, to appear.
robus•tness of the description process.=

7. A. Rosenfeld, "Cooperative Computation in
This work is continuing with the analysis of Texture Analysis," in Proc. Image Understanding

texture gradi'ents irncludiing extraction of the Workshop, Los Angeles, Nov. 1979, pp. 52-56.
necessary information from real images and
analysis. We nave applied this system to a 8. H. Tamura, S. Mori, T. Yamawuki, "Textural
variety of texture types and it is capable of Features Corresponding to Visual Perception," IEEE
prodicing effective descriptions. Trans. SrC-8, June, 1978, pp. 460-473.

REFERENCES 9. D. Marr, "Early Processing of Visual

Information," AI-l'-340, Artificial Intelligence
1. R.M. Haralick, "Statistical and Structural Laboratory, MIT, Cambridge, MA. 1975.
Approaches to Texture, Proc. IEEE 67, 1979,
pp.756-804. 10. F. Vilnrotter, R. Nevatia and K. Price,

"Structural Description of Natural Textures,"
L. II.M. Haralick, K. Shallmugaltl, a nd I . Proc. 4-1CPR, Miami Beach, Dec. 1980.

Denstein, ",Textural Features for Image
Classification," .FEE Tranm. SMC-6, 1973. pp. 11. R. Novatia, K. Price and F. Vilnrotter,

660-621. "Describing Natural Textures," Proc. 6-IJCAI,
Thkyo, Japan, Aug. 1979, pp. 642-644.

3. L.S. Davis, S. Johns. 11.J.K. Aygarwal,
"Textural Analysis Using Generalized Co-occurrence 12. T. Matsuyama, K. Saburi and M. Nagao, "A
Matrices," IE&E-T-PAYl-, 1979, pp. 251-259. Structural Description of Regularly Arrdaged

Textures," 5-IJCPR, Miami, Fl., Dec. 1980, pp.
'. A. Rosenfeld and Kak, Digital Picture 1115-1118.
Processin 9, Academic Press: New York, 1976.

13. L.S. Davis, "computing the Spatial Structure
5. R. Bajcsy, "Computer Identification of of Cellular Textures," CGIP-lI, pp. 111-122,
Visual Surfaces," Conm.puter Graphics and Image 1979.
Pr~ocessin_@-2, -r t. 1973, pp. 118-130. 14. P. Conners, and C. Harlow, "Toward a

6. J.T. Maleson, "UndersLanding Texture in Structural Textural Analyzer Based on Statistical

Natural Images," University of Rochester, Ph.D. Methods," CGIP-12, pp. 224-256, 1980.

Fig. 1. Raffia subwindow.

64

: tJ



NUMBERS APPEARING IN PARENTHESES ARE SCALE DEPENDENT

FILENAME 1- RAFFIA.NRIO PRIMITIVE ANALYSIS FOR TEXT. SUPP12 (THRESH - 10)

DARK OBJECT DESCRIPTIONS
RELATIVE INTENSITY IS DARK DIRECTION IS

HORIZONTAL SCAN DIRECTION VERTICAL

NO EVIDENCE OF PERIODICITY OR PREDOMINANT NUMBER OF SAMPLES: 108
ELEMENT SIZE

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AND
300 SCAN DIRECTION 10.39)

NO EVIDENCE OF PERIODICITY AVERAGE PRIMITIVE SIZE IN PIXELS IS: (20,30)
WEAK EVIDENCE OF PREDOMINANT ELEMENT SIZE

(25.40) AVERAGE PRIMITIVE INTENSITY IS: (128.79)

VERTICAL SCAN DIRECTION PRIMITIVES REPEAT AT ELEMENT SPACING: (8.00)
IN ABOVE MENTIONED DIRECTION

STRONG EVIDENCE OF PERIODICITY IELEMENT
SPACING 8.00)

STRONG EVIDENCE OF PREDOMINANT ELEMENT RELATIVE INTENSITY IS LIGHT DIRECTION IS
SIZE (3.00) WITHMODERATE SUPPORT FOR VERTICAL
ELEMENT SPACING (8.00)

NUMBER OF SMAPLES: 109
RATIO OF SIZE TO PERIOD IS .38

AVERAGE PRIMITIVE DIMENSIONS ARE: (4.00 AND
9.33)

LIGHT OBJECT DESCRIPTIONS
AVERAGE PRIMITIVE SIZE IN PIXELS IS: (36.94)

HORIZONTAL SCAN DIRECTION
AVERAGE PRIMITIVE INTENSITY IS: (172.35)

NO EVIDENCE OF PERIODICITY
STRONG EVIDENCE OF PREDOMINANT ELEMENT SIZE PRIMITIVES REPEAT AT ELEMENT SPACING: (8.00)

(3.00) IN ABOVE MENTIONED DIRECTION

300 SCAN DIRECTION
RELATIVE INTENSITY IS LIGHT DIRECTION IS

NO EVIDENCE OF PERIODICITY OR PREDOMINANT HORIZONTAL
ELEMENT SIZE

NUMBER OF SAMPLES: 68
VERTICAL SCAN DIRECTION

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00
STRONG EVIDENCE OF PERIODICITY (ELEMENT AND 7.88)

SPACING 8.00)
AVERAGE PRIMITIVE SIZE IN PIXELS IS: (15.18)

STRONG EVIDENCE OF PREDOMINANT ELEMENT

SIZE (5.00) WITH MODERATE SUPPORT FOR AVERAGE PRIMITIVE INTENSITY IS: (190.47)ELEMENT SPACING (8.00)
NO EVIDENCE OF PERIODICITY

RATIO OF SIZE TO PERIOD IS .63

60°, 1200 and 150 SCAN DIRECTIONS FOR BOTH LIGHT Fig. 3. Raffia primitive texture e~emnt
AND DARK OBJECTS description.

NO EVIDENCE OF PERIODICITY OF PREDOMINANT
ELEMENT SIZE

Fig. 2. Syntbolic texture description of raffif.
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A12

C

Fig. 4. Abstract represantation of raffia
primitives.

Fig. 5. Caiiposite primitiveg.

(a) Brick pattern 1 subwindow. (b) Brick pattern 2 sidywindow.

F Figure 6.
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PRIMITIVE ANALYSIS FOR BRICK I PRIMIIIVE ANALYSIS FOR BRICK 2

RELATIVE INTENSITY IS LIGHT DIRECTION !S RELATIVE INTENSITY IS LIGHT DIRECTI'N IS
VERTICAL VERT I CAL

NUMBER OF SAMPLES: 87 PRIMITIVE NUMBER IS: I NUMBER OF SAMPLES: 39 PRIMITIVE NUMBER IS: I

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00
AND 52.92) AND 145.26)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (105.39) AVERAGE PRIMITIVE SIZE IN PIXELS IS: (289.87)

AVERAGE PRIMITIVE INTENSITY IS: (120.80) AVERAGE PRIMITIVE INTENSITY IS: (175.44)

PRIMITIVE REPEAT AT ELEMENT SPACIN(,: PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00)
(15.00) IN ABOVE MENTIONED DIRECTION IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS DARK DIRECTION IS RELATIVE INTENSITY IS DARK DIRECTiON IS
VERTICAL VERI ICAL

NUMBER OF SMAFLES: 106 PRIMITIVE NUMBER IS: 2 NUMBER OF SAMPLES: 122 PRIMITIVE NUMBER IS: 2

AVERAGE PRIMITIVE DIMENSIONS ARE: (10.00 AVERAGE PRIMITIVE DIMENSIONS ARE: (8.00
AND 35 34) AND 40.93)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (353.14) AVERAGE PRIMITIVE SIZE IN PIXELS IS: (326.57)

AVERAGE PR;MITIVE INTENSITY IS: (100.59) AVERAGE PRIMITIVE INTENSITY IS: (134.25)

PRIMITIVES REPEAT AT ELEMENT SPACING: (15.00) PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00)
IN ABOVE MENTIONED DIRECTION IN ABOVE MENTIONED DIRECTION

Fig. 7a. Brick pattern 1 primitive texture Fig. 7b. Brick pattern 2 primitive texture

element description. element description.

Figure 7.

Fig. 8a. Brick pattern 1 canposite Fig. 8b. Brick pattern 2 ccriposite
primitives. primitives.

Figure 8.
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BRICK2 PRIMITIVE PLACEMENT RESULTS

BRICKI PRIMITIVE PLACEMENT RESULTS
ANGLEI DISTANCE TOTAL.

I PRIMI PRIM2 (DEGREES) (PIXELS) (M)
ANGLE DISTANCE TOTAL

PRIMI PRIM2 (DEGREES) (PIXELS) (M) 1 90 12 18.28
I I -90 12 . 7

I 1 -90 15 52.91
1 1 90 15 52.90 1 2 -170 is 18.47

2 -170 30 18.88

1 2 -90 6 *''*52.72 1 2 -30 12 ***28.701 2 90 6 52.25 1 2 10 24 23.812 10 33 18.76
1 2 80 6 20.70

2 I -90 6 42.88
2 1 90 6 51.48 2 2 -160 24 136.632 2 -90 12 19.19

2 2 180 45 **65.10 2 2 -30 27 **33.17
2 2 -9(0 15 4c94.55 2 2 0 4- 36.532 2 0 45 *63,612 2 2 20 24 "36.Ll2 2 90 15 •',94,55 2 2 90 12 20.36- 2 2 150 27 **32.52

2 2 180 45 36.18

I Negative angles are counter-clockwise;
posit~ve angles are clockwise. INegative angles are counter-clockwise;

positive angles are clockwise,

Fig. 9a. Brick pattern 1 interprimitive angle Fig. 9b. Brick pattern 2 interprimitive angle in
in degrees, distance irL pixels and degrees, distance in pixels and
frequency of occurrence, frequency or occurrence.

Figure 9.

t I

Fig. 10a. Brick pattern 1 reccinstruction. Fig. 10b. Brick pattern 2 reconstruction.

Figure 10.
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Abstract
identify and measure the information content of

In this paper, binary and gray-level natural individual statistical measurements. BY
textures are synthesized using several methods. assembling these measurements and incorporating
The quality of the natural texture simulations them into a texture simulation process, statistics
depends on the computation time for data may be measured from a parent texture and used to
collection, computation time for generation, and produce a texture simulation. The degree to which
storage used in each process. Many textures are the parent and simulation are visually similar
adequately simulated using simple models thus indicates the value of the statistical
providing a potentially great information measurements and the model used in the simulation
compression for many applications. Other textures process. Given a group of statistical
with macrostructure and nonstationary measurements which are proposed to be useful
characteristics require more extensive cumputation texture measures, the best may be chosen based on
to synthesize visually pleasing results. Although the quality of the corresponding texture
the success of texture synthesis is highly simulations. In this way, researchers are able to
dependent on the texture itself and the modeling develop better discrimination as well as better
method chosen, general conclusions regarding the synthesis methods.
performance of various techniques are given.

2. Concepts of Texture Synthiesis

Despite its importance, a precise definition
1. Introduction of texture does not exist. Texture is often

considered to be composed of a set of primitives
and their spatial organization. More importantly,

Texture is important characteristic for the texture usually possesses an invariance property.
analysis of many types of images. It is an It is this invariance property which we will use
important feature for discrimination and to nebulously define texture in this paper. An
identification of regions in images and as a observer should detect no visual difference
result, many techniques for texture analysis have between one windowed portion of a textured region
been in the area of discrimination. Hence, many and another. Thus texture is also a function of
different texture discrimination techniques have window size. If a difference over a region is
been developed [13]. Most are ad hoc. detected then either the texture is not

homogeneous or a larger window shoutld be used.
Texture synthesis has been over-shadowed by Windowiag is very important when gathering

the emphasis placed on the discrimination problem statistics to be used for texture discrimination
and its applications. Little work has been done or texture synthesis.
in the synthesis area even though numerous
applications exist. For example, sensors could The appiroaci to texture synthesis used in
identify boundaries of textured image regions, this paper -s outlined in Fig. 1. As a first step
Based on statistics gathered by the sensor, this in the .;ynt.hesis process, statistics are
region could be reconstructed using simulation calculated f -,, measurements taken on a parent
techniques with little or no loss of information, sample texture. The statistics are then used to
The result is excellent information comp.-ession. estimate model parameters. In the final step,

these model parameter estimates are used to
Texture synthesis can also be used as a generate a texture synthesis.

texture analysis tool leadiry to a better
understanding of textures and their perception by All of the digital images in this paper are
humanis as well as improved methods of 512 by 512 pixels. They have either 256 gray
discrimination. By carefully controlling the levels (continuous tone) or 2 gray levels
statistics of a texture in a synthesis process (binary). The original parent texture images in
visual changes in texture are observed. Thus, this paper have been chosen from an album by
texture synthesis methods allow researchers to Brodatz il]. High quality prints obtained fron
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the potographer were scarnned and digitisad t the AssLkiiing homogeneity of the texture, then
USC Image Processing Institute. PP* ý + -+p (5)

3. Statistics of a Texture(5
for all rti and an arbitrary vector constan~t c. As

The terminologie3 in a portion of previous an example,
texture work have often been vague at best. As a
result, the te=m- second-order and third-order P(VIV 2 'V3) = P(V 41V5 'V6 ) (6)

have been seriously twisted and misinterpreted

from study to study. In this paper, we will in Pig. 3. The statistical expectations of any
attempt to suppress this confusion by carefully function of these third-order densities are called
defining the various terms, third-order statistics. All second-order

statistics may be derived from third-order joint
The stochastic approach toward texture densities.

analysis considers texture fields as samples of
two-dimensional stochastic fields. Assuming that 4. The itochastic Synthesis Approach
we are dealing with sampled and quantized imagery,
let I(nMare 2 ) denote the random field. Here ni 1 oarly texture studies involved the use
and nri• are integers representing coordinates of of binary textures generated by one-dimensional
points ?n the image plane. Let n. be the vector Markov processes. Such work was presented by
having coordinates nil and hi9 (i'.e (r:l,ni2)). Julesz ,21. Pollack [3], Purks and Richards [4]
Second-order statistics are given by the set of and Garber [5]. In thesa one-dimensional models a
second-order joint density functions large vector of pixels was generated line by line

using a set of parameters

1n (Iv 1i P(VN+I/VIV2 VN)
for all possible vectors ni and rW, where Vi and
Vj are the values of the randcm? variables I(•) •here P(A/B) represents the probability of A given
and I(ij), respectively. In most texture work and t3- We will refer to these conditional
in all of the work in this paper (except for the probabilities as generation parameters. In the
work in section 13) the random field is assumed to above notation each V represents a generated
be homcgenecAks, that is, all orders of probability pixel which has value 0 (black) or 1 (wh ite).
densities are invariant through translations. Thus each pixel value depends on the N pixels
Thus, previous to it. A twa-dimensional texture image

is then formed by breaking up the large vector of
Pi =- P+ , n+; (2' pixels into shorter strings and stacking them one

n 2 j 1 ) on top of the other (see Fig. 4). This procedure
where i is an arbitrary vector constant. As an for large images nearly insures image row
example, independence (unless N was large) thereby creating _

only horizontally oriented textures totally
P (V IV 2 ) E P (V3 ,V 4 ) (3) unsuitable for simulating natural two-dimensional

textures.

where VI, V2 , V3 and are as shown in Fig. 2.
In most oi our work, dumnv values of random By allowing N to increase exceeding the short
variables (denoted for example by V-) will be used strinrg line length, two-dimensional (vertical andvariabelies (dente for ampleobytin will bhorizontal) dependence may be induced into the

t generating process. A pixel value then depends
Given the assumptions that a texture field is not only on the pixels previous to it on the same

homogeneous, the joint dansity functions P for line bet also on the pixels above it (see
all vector separations r ' ii-I represent the Fig. 5(b)). Thbus, textures could be generated as
most complete set of second-order statistics a time sequence in television raster scan fashion.
possible. The statistical expectation of any In theory, texture dependence could be extended ad
functions of these joint density functions are infinitum, however practical considerations
called second-order statistics. If a pixel is concernTn the actual generation process show us
connected to any of its neighbors on the same row, that 2 generation parameters must be accounted
that is if we consider neighbors immediately to for. As a possible solution to the storage
the left or right (such as V5 and V6 in Fig. 2) problem we can choose to ignore all but N of the
then their joint density is called a second-order previous pixels in our generation process and we
nearest-neighbor joint density and any statistical can allow the pattern of the Vi's to become
expectations of the joint density are second-ordet flexible. This idea will be discussed in later
nearest-neighbor statistics. sections of this paper.

Similarly, third-order statistics are given Throughout the remainder of this paper, the
by the set of third-order densiLy functions set of pixels, Vis, on Witch the next pixel,

VN+I, depends will be referred to as the "kernel"
P4 + - (V ,V ,Vk) (4) of the synthesis process. The pixel VN+1 will be
ni~njSnk 1 k( referred to as the "eye" of the kernel.
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Given a parent texture we can estimate the the V5 pixel directly depends on only some of the
generation parameters needed to generate it in pixels in its surrounding neighborhood. In this
many ways. Ignoringboundary conditions, linear case, V5 may be generated based on the values of
unbiased estimates (P's) of the P's may be defined pixels VI,V 2 ,V3 and V4 but is directly dependent
as on no other pixels in the neighborhood. This does

not imply that V5 is not related or correlated
M N with its other neighbors. In fact, the

P(Vl'V2 ... vN) = 1T "(T(k+j)-Vk) (8) relationships between V1 , V21 V31 V4, and V5 will
j"" ) =R ki determine other interrelationships,j=0 k--1

where A non-contiguous neighborhood of V's is used

0 if V as it allows a more parsimonious model tor texture
6(V =J generation to be chosen. An analogy is in simple

j'k 1 if V Vk linear regression (as defined by Draper[10]) where
independent variables which do not contribute to
the prediction or estimation of the dependent

ar_ 7(i) represents the ith element of the variable are dropped from the model equation. In
one-dimensional texture string from which the texture generation this allows the model to be
parampters are to be estimated. Equation (8) estimated by fewer parameters and makes the
assumes that the Vi are contiguously located in generation-synthesis process more efficient by
order along a line. It simply states that in reducing the number of computations required.
order to estimate P(VI,V 2 ,.. ,VN) for a fixed When generating textures based on N-grams,
pattern V ,V2,...,VN, all M substrings (samples) reducing P reduces the amount of storage required
of length N are taken from a parent substring of for gN generation parameters as defined by Eq. (9)
length M+N-l and the number of occurrences of the where g is the number of gray levels in the image
specific pattern VIV2,...,VN are counted, then and N is the number of elements in the synthesis
divided by M. This is equivalent to estimating kernel. By allowing the kernel of Vi's on which
the probability density function of a random VN+l depends to be non-contiguous, the range of
variable by the h.stogram of a set of samples, dependence in a distance sense is increased over

that which would be allowed with a contiguous
This idea of estimating N-grams, kernel containing the same number of Vi's. This

P(VlV2,...,VN), from a sample parent texture may is very important to obtain the larger structure
be extendej to the two-dimensional case. A &pparent in many textures. Reducing the number of
histogram of occurrences of each pattern of pixels in the model also relieves us from the
(Vl,V2,...,VN) is made by passing the complex numerical problems of inverting matrices
two-diraensional kernel in Fig. 5(b) over the of urwieldy size, a necessary step in linear model
two-dimensional sample parent image. The tally is parameter estimation discussed later in this
then divided by the total number of sample paper. We would, for example, not expect our VN+1
p[etterns observed to obtain P(Vl,...,VN). As was pixel to depend on a pixel Vi where the spatial
ýtated earlier, two-dimensional synthesis is earto between VN+1 &nd Vi is large. If that

merely an extension of the one-dimensional case distance is small, however, we would expect a
ignoring boundary conditions of the large dependence.
two-dimensional image. The method for choosing the proper

The generation parameters of a texture may be independent variables (Vi's) to be included in the
estimated for any given set of N V 's from a generation process requires special attention. We
parent texture using the estimates of the P's from wish to choose the best subset of N variables from
Eq. (8). These statistics have the property a larger finite neighborhood of T variables, where

A N<T. CvalJuating such •ubsets and their
E[P(VN+I/V1 .... V P(VNIV ...... VN) corresponding models requires a criterion.

Texture rasults for each possible model could be

where visually examined and compared and the Vi's of the
model corresponding to the visually mos• pleasing

V+1l... Nresult could be chosen. However, (•) model
= P(V"1 .. N'VN+l evaluations must be done using this approach. For

a simple search through T = 40 points with N = 12,
(9) 5.5 billion models would have to be evaluatedl

This approach is therefore impractical and so a
(P(VI .... VN,0) + p(V . VN, 1)). sub-optimal approach ,kiich yields a good but not

necessarily the best set of Vi's for our model
mu3t be used.

5. Kernel Selection Usir• The Linear Model
If we view this problem as one of predicting

We will refer to the Vi's on *Aiich the next a dependent variable, VN+l from a large set of

pixel, VN+I, depends as the kernel of the independent variables, V 1 's, then the standard
generation process. Geometrically speaking, the linear model approaches may be applied. A forward
Vi's form a kernel "shape" or "pattern" which may selection procedure was used to choose the set of
or may not be spatially contiguous. For example, Vi's in the model and It is explained in detail by
in Fig. 6 a generating kernel shape is shown where
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Draper and Smith [10]. One at a time, the Vi's P (VN/V,. ,VN) by P(V+,_ 1 '....'. ). In Lur
are entered into the model and the linear equation stdy,tiil 'a.as don( if tho sa,,,p1 se to rom~npu,

P (VN+I/V,...,VN) was less than 10. The variable
VN+I='1Vl .2V2'" "+tVN+0+r" (10) i is increased until thizi co.1dition is met.

At each step, the Vi which -ninieize. the ovrall Texture simulations us_'ni this method are
SmT* of squares error when the corresponding linear shown in Figs. 15(b), 16(b) and 17(b). Visually,
model is applied to the original input data is the results are very good. As the estimated
entered into :he model. Variables are entered texture generation parameters are approximated
until either a maximum number is tai ad or the using statistics gathered from the full parent
magnitude of the correý.xnding (3i coefficient is texture, non-homogeneity in the parent texture
small, will cause an "average" texture to be synthesized.

5. Seeding the Process The bark texture is among the most difficult
to simulate due to its very unusual
macro-structure. Still, the N-gramn simulation

Mhen synthesizing a two-dimensional image, j looks remarkably similir to the original when
frame of pixels is needed to seged the process as windowed regions 20 to 40 pixels square are
shown in Fiq. 7. The seeding pr-cess may be observed. The parent texture of water is
handled in a variety of ways. The simplest non-homogeneous es the waves are more closely
approach would be to randomly generate the seed spaced on one side that on the other. The
once for the whole image. In this case the pixel synthesis contains waves of an average size. As
values in the seed frame of Fig. 7 remain the same we are attempting to synthesize textures andr not
throughout the generation process. Parent texture merely "image code" the parent texures, details
data could also be used to seed the generation and non-homogeneities will be lost in the
procedu.a. Regardless of the seeding process, all synthesis process.
texture synthesis metbods developed in this paper
normally converge to a steady state within 5 to 20 8. Linear Model Generation of Binary Textures
pixels of the border ot the image. This was
confirned by repeated studies of convei-gence The process of choosing the Vi's to be
effects on texture simulations. In most cases, present in the texture generation kernel describud
this narrow region is not noticeable and is in section 5 of this paper actually yields a
included as a part of the result. In some simple linear model which can also be used to
critical applications these edges could be thrown generate binary textures. The model which resultsaway. from Lhe determination of the generatiorn kernel

may be expressed in equation form as
7. Results

Once the points for the kernel are chosen VN+I'k = (IVI'k+62V2 ,k+'"+1+NVN'k+0+k (11)

based on the linear model derivtJ using the or more simply as
methods describcd in the previous sections,
estimates of the generation parameters for the VN+1 1 V I + 2 V 2+...+VN + 8 O + E (12)
texture are obtained using concepts discussed in
section 4. Practical considerations require us to Once the estimates of the Sj's are known, a pixel
use binary images (g2) and limit N, the number of VN+l may be calculated from a set of given values
pixels in the kernel, to 12 to 18 depending on the V plus an error c . In one-dimensional analysis
processor storage available as 2N values must be this is sometimes known as the autoregressive time
stored. These conditional probabilities are then series model [6]. For binary Vý a value of VN+1
used to generate each pixel along a row, row by will be produced which is non-binary. To generate
row until a complete two-dimensional texture is binary data using this model will therefore
obtained. For each pixel the appropriate require quantization,
generation parameter estimate is found and a
unifurmly-distributed pseudo-random variable is In the N-gram approach to texture simulation,
generated. Based on these two values, a black the randomness of the texture is induced by the
pixel (0) or white pixel (1) is generated. generation of a uniformly-distributedpseudo-random variable during the generation

In practice, not all of the generation process. The comparison of this value with the
parameters may be estimated when N is large estimate of the generation parameter,
because all possible patterns of VI,V2,...,VNi,VN+1  P(VWI/Vl,...,Vd, yields the next binary pixel.
may not be present in the sample image or there A similar type of randomness must occur in the
may be few of them. Smaller samples can cause generation of binary textures using the linear
inaccurate estimation of the P(VN+I/Vl,...,VN) as model of Eq. (12). This randomness is expressed
the variance of our estimate is larger and in the model in the error term F_

therefore the expected error of our estimate is
larger than would be expected with a larger sample We can obtain an estimate of the distribution
size. In these cases it is important to sum over of c in the same manner as we estimate the ý's oa-
the least siqnificant kernel elements and estimate
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I,.,

the model. This may be done by applying the model the number of model elaerts is greater than two

to the nample data from which it was derived and or three.
observing the errors.. That is, the liaear model
kernel is passed ovqr the parent texture image and In our study, the :mpler auturegreLssive
at each pint a +1is calculated based^ o model is used and is allowed to contain a larye

Eq. (12) without the error term. Then VN+ 1 -VN+ number of parameters. This is possible using the
is calculated where VN+l is the actual value oi assumption of homogeneity (stationarity) combined
VN+ 1  in the parent texture. The histogram of the with the forward selection process of choosing
values can be used to astimate the distribution of non-contiYLDus generation kernels as described ir)
E. As one step further we could assume that has section 5. These models are exterded further by
some known distribution such as Gaussian or a] owiny second-order autoregressive models arnd
normal, and "eiy estimate the parameters non-Stationary nois•e. Results of texture
necessary to del this distribution. In the simulations usinui these models are included in
normal distribution case, only the standaid this paper.
deviation (or variance) of e needs to be
estimated. The mean of L is zeko in the linear 9. The L~near Autoregressive Model
model, least-squares distribution.

In section 8 the linear autozegressive mode',
Our generation process then consists of the used to determinu the elements of the gereratitg

calculation of Z 8iVi+a0 to which we add a random, kernel, was expressed as
normally-distribuLed error tern : and this value -
is then quantized to 0 or 1 based on comparison Yk = X + k=l,... M (13)
with 0.5. Results using this generation method
are shown in Figs. 15(c), 16(c) and 17(c). In •here
these tigures, N was allov.ad to be ao large as 70
as only N coefficients (not 2N) need to be stored Yk VN+I,k
along with 8., the estimate of the error standard
deviation, and

The linear model simulations are slightly "
inferior to the N-gran simulations but th Vl,k
degradation is far less than we would expect from
such a massive compression of information (which V2,k
is epproximnately 2 to 70Y. The results were
good enough to encourage the application o" the
linear model to continius-tone textures.

W:Cormick and Jayaramamurthiy [7] were perhaps VNk
the first to make a notable attempt to simalate
natural textures using this appr'ýach. Their work the cmtplex Box and Jenkins ARIMA model which
consisted of a discussion of the Box and Jenkins leads to difficult model parameter estimation if
autoregressve (AR), moving average (MA) and Here ý is an (N+l)xl vector of unobservable
autoregressive integrated moving average (ARIKA) parameters and ck is an unobservable random
models including estimation of model parameters variable such that E[tk] = 0. The sample number
and adequacy of model fit. A very simple model (irdex) is denoted by k 3nd M is the total numbeT
ws then used to simu.ilate two very similar of observations. We can also define the vectors Y
textures by tilling in the holes of a parent and 6 and the matrix X by
t-xture using the derived model. Only two
textures, both exhibiting a wood-grain-like 4.
structure, were used. Similar work was done later X Y Ei

by Iou, Kao and Chang 8]. Unfortunately, the 1 1

results of their simulation of these textures were .T
displayed using a printoum- of Chinese characters 2 Y 2 2
and so the degree of success cf their method is
unclear. The appearance of texture synthesis • • • (14)
results on a computer prinI-toat will confuse most
observers unaccustomed to such crude image T F

displays. The models ware aqc:,in very simple and . YMj M
contained ro more than three terms in the linear
model summation. Deguchi and Morlshita [9]
attF'npted to use the linear model to segment and
partition textures. ThE r approach was only
partially successful., and our model may be expressed as

In the above simulation attempts, the mndels Y = Xý + E (15)
used were simple. ',e process of collecting
statistics and estimating garameters is complex. In equation form, dropping the k subscript, the
In some cases, previous authors attempted to use model becomes
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A full second-order model with N independent
VN+1= 8 1V+ 8

2 V2 +.. .+0N V N+80 +C (16) variables will employ (N2 +3N)/2 terms in addition
to the 80 (constant) and E (error) terms. This

Sums and suns of squares leading to the general second-order linear model may be written
calculation of the correlation or covariance as
matrix of the parent texture are obtained by
passing any chosen generation kernel pattern over VN+1= 8V+ 2V2+...+ NVN
the texture. From this matrix, the least-squares
parameter estimate of 8 is obtained. The +82lV 2+.+8 Emultiple-pass forward selection process desciibed I2VlV2+..-..0

in section 5 leads to a final linear N N N (20)

autoregressive model which is then used to ' r - i
generate textures. = 8iVi+ i ijVV+ 80+ E

The linear (autoregressive) model of Ej. (16) i=l i=l j=1

was used to simulate a variety of natural
textures. Stationary, independent Gaussian noise Second-order models have been particularly useful
wav used to drive the synthesis process. The in studies where surfaces must be approximated by
variance of the nolise was estimated by applying polynomials of low order. In all cases, a
the model to the sample data and observing the second-order model will *fit" qiven data as well
prediction errors. These errors, which are often as or better than a first-order model that is a

cilled residuals, are pixels formed by the subset of second-order models. This does not
difference VN+I-VN+1 where VN+l is the actual imply that the second-order model will be more
observed pixel value of the sample narent image correct however, as the process which we are
anda N+1 is the corresponding fitted value attempting to model may be in fact a linear
obtained by use of the linear model. The standard first-order process or sonic other type.
deviation of these errors can be measured and used
as the standard deviation of pseudo-random The use of a second-order model to
nonaally-distributed noise in the generation approximate the surface of the general stochastic
process. Actually, this information can also be model could have many advantages over a
obtained during the decomposition of the first-order model. An example of fitting such a
covar.ance matrix, model in one dimension to a given set of data is

shown in Fig. 8.
To tie this method with the previous

sections, this method of texture synthesis is Still the linear first-order model may
equivalent to defining Pe(VNI4/VI,...,VN) as a provide a good fit to the data and the magnitude
normal distribution with mean of the unexplained variance in the data may be

large enoujh that the improvement due to the
iI+8 2 V2 +- ... +N V 0 (17) addition of second-order terms to the model may be

barely noticeable. In two dimensions, the fitting
and variance VAR[e ]. problem is one utilizing a quadric surface such as

The number of pixels in each generation a elliptic paraboloid or hyperbolic paraboloid
Thrnel, Nvabiedfrof 3 p l i. eah geation versus a plane to fit a given set of data. Again,

kernel, N, varied from 30 to 60. The simulation the fit may or may not be markedly better. Adding
results are shovn in Figs. 18(b), 19(b) and 20(b) . second-order terms to a model will always produce

a fit as good as or better better than a
These simulations indicate that the linear first-order model but the number of computations

model using stationary gaussian noise produces required to compute the coefficients and fit the
acceptable simulations of a variety of textures model are much greater.
including wool and water.

It is also important to note that the
10. Second-Order Linear Model covariances of the Vi are required in order to

When wa say that a model is a iiiiear or obtain least-square estimates uf the parameters 8.
nonlinear, we are referring to linearity or in the first-order model [10]. Covariance is
nonlinearity in the parameters. The value of thq essentially a second-order statistic. Therefore,
highest rpwer of an independent variable in the estimating the pareme, :.,s of a second-order model
model is called the order of the n.odel. For will require the use of fourth-order sLatistics.Ixamodel Specifically the correlation of terms V. V19 and

V Vi3Vi4 is needed. ThIs nay cause serious problems

Y = jiVl+a11V•+80+± E:18 as many cases the variables in• a second-ordermodel will he highly i tercorrelateu. For

is a second-order linear mooel. A general example, the terms VI, V? and VIVi (if Vi is
second-order linear model with two independent highly related to Vl) may be strongly correlated.

This situation, often referred to asvariables may be written as multi-collinearity, may cause problms during the
V+V£ inversion or decomposition cf the estimated

J.11 +22 2+12 1 2+0 correlation matrix, a necessary step in model
parameter estimation. For this reason, care
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should be exercised during the analysis of Results of texture synthesis formed using this
second-order models. model are shown in Figs. 18(d), 19(d) and 20(d).

Inside a circular radius of 14 pixels from The arbitrary distribution of error as a
VN+l there are 307 pixels. 7b search all possible function of VN+] is calculated by applying the
cross products in this region to find the most calculated linear model to the original parent
significant would require over 47,000 cross texture and coiputing a histogram of errors as a
products to be examined. Computation of a function of VN+l. In other words, ^the
covariance matrix containing all of these terms is distribution of E depends on the value of Val
impossible (in practice). In our study we were and this distribution is estimated by applying "ne
limited to investigate only 820 possible cross podel to the originol parent texture and observing
products for entry into the generation model. As VN+1 and the error VN+I-VN+i.
most of the variance was explained by the linear
terms of the model, most of the cross products In most cases, considerable improvement is
were i.significant from a statistical point of seen when these simulations are critically
view. This selection procedure is detailed in observed on a high-resolution display device and
[10] at- in section 5. Those that were compared with the stationary model results. Of
significant were entered into the model and a new course, the information required to generate them
texture was generated using Eq. (20) with is considerably greater also. The distribution of
stationary Gaussian noise and having zero .ean and errors as a function of V 1 must be condensed and
fixed variance . coded to some degree to minimize storage

requirements. For a 256-grey-level image VN+1
The results of texture simulations using the usually ranges from -50 to 305 and the errors,

second-order linear model are shown in VN+I-VN+I, from -255 to +255. These ranges were
Figs. 18(c), 19(c) and 20(c). On some of these determined experimentally. This would yield quite
textures only a slignt improvement from the a large amount of data if fully stored. By
addition of second-order terms may be seen. In storing a small number (under 3.00), typical errors
most cases, no change can be observed even when for each range (and not each single value) of VN+1
the results are displayed on a high-resolution the number of data values we are required to store
display device. The lack of improvement could be can possibly be reduced to under 1000. Therefore
due to the small number of cross-terms examined; it is believed that this approach nf using
however we feel that this number is sufficiently non-stationary, non-Gaussian noise to generate
large to show any considerable improvement due to textures may be quite acceptable even with severe
the addition of second-order terms to the linear storage limitations.
model.

32. Skip-Generate Method
11. Textures with Non-Stationary Noise 2

Simulating textures which have a fine
Applying a texture gene.ation model to the structure is usually a much easier process than

original parent texcu-e imaqe data used to simulating textures with coarse structure. This
estimate its parameters gives a residual error occurs because the linear model contains fewer
image. This sequence plot of residuals in the terms if the texture pixels become uncorrelated
case of two-dimensional texture synthesis is over a small distance. For the same texture at a

- essentially an image , containing thý pixel greater magnification, the pixels become highly
differences or residuals VN+1-VN+I. Here VN+1 is correlated and the linear model will be forced to
the prediction of the next pixel in the sequence contain more terms. As the texture becomes more
as a linear function of the pixel around it coarse, more time-consuming statistical
according to the model withouit any noise added. measurements must be taken on the parent texture
Naturally, we would expect these errors to be over larger windows. Motivated by these problems,
small as merely subtracting one pixel from its the texture generation algorithms in this section
nearest neighibor would yield a small value in most have been developed.
natural, low-noise images. Definite patterns are
seen to exist in these images and thus a violation Itt the texture work so far, pixel VN+l was
of the independent assumption is indicated, generated based on pixels above or to the left of
Ideally, this residual image would be uncorrelated it (see Fig. 5(b)). As discussed in section 5,
noise, the kernel does net have to be contiguous. This

kernel shape is chosen to insure that the image
The distribution of this error and the space of our synthesized texture was filled during

relationships between the predicted and actual the generation process. However, generating
pixel values was utilized to gererate textures pixels along a row, row by row is not ttL only way
using non-stationary noise. The procedure begins of filling an image space.
by generatirg a pixel VN+1 according to Eq. (20)
excluding the error term. With this predicted Consider the non-contiguouz kernel mask in
value a random error value is chosen to be added Fig. 9. IU the spacing between the pixels in this
to VN+I. This error value is chosen~from the mask is B, using the linear model in Eq. (16) to
distribution Af error as a function of V ., and generate the right-most pixel in the bottom row,

can have any arbitrary distribution. ;Me next we can generate every 8th pixel along every 8th
pixel will than be computed in a similar manner, row. At each step the next pixel is generated
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Sbased on the previously-generated pixels around it 13. Best-Fit Texture Model
(ignoring boundary conditions). After generating
an image with this type of spacing, the pixels A metho-d of generating texture simulations
midway between the previously-generated pixels en according to their Nth orde- densities was
each row may be generated usivg the masz in investigated for binary textures in section 4.
Fig. 10. In this mask, the pixel with the Wx" in The simulations resulting from this Mark-v process
it denotes the next pixel, VN+l, to be generated resembled their parental textures quite closely in
according to Eq. (17). i- ally, the linear most cases. When applying a similar concept to

model used in this step will nave different multi-grey level imagery, the limits of computer
coefficients than the previous one. It is also storage are soon reached. To circumvent this

interesting to note that new pixels depend iot constraint, a new method of texture synthesis was
only on previously generated pixels above them (as developed and applied to a number of textures.

with the mask in Fig. 5(b)) but depend also on the
pixels below them. Still, ignoring boundary In binary texture generation based on N-grams

conditions, each pixel depends only Dn previously a single functional 'ralue P(VN+I/V-,...,VN) was
generated pixels. At the next step a mask similar stored f.r each possiole pattern (01 ,VI, ... ,VN)
to that in Fig. 11 can be used to fill in the where the Vils can he zero or one. This value,

pixels midway between the previously-generated also called a generation parameter, represented

pixels in each column. Again pixels are allowed the conditional probability that the next pixel,

to depend on pixels around them. VN+l, in the genreation process would be a
zero-valued, black pixel. The Vils were cho~sen by

Cy repeatedly using the masks in Fig. 10 and a best linear model fit detailed in section 5 and

Fig. 11 with successively closer and closer pixel therefore the kernel of previous pixels
spacing, the texture simulation image space is (Vl,...,VN) is not necessarily contiguous (see
filled., An example showing the pixels generated Fig. 6). Details concerning the estimation of
at each successive pass is shown in Fig. 12. More P(VN+I/V,.. .,vN) from a parent texture are given

importantly, to determine the linear model for in section 4. For binary textures, this single

each mask, only one covariance matrix is required value is sufficient to define the distribution of

and can contain as many or as few terms as VN+1 given VI,...,VN. The number V different

desired. The process of collecting statistics for functions which must, be stored is 2 . In the

one matrix is not beyond the complexity tiAt w generation process each pixel VN+1 is generated

would want to undertake for the small number of based on the values of the pixels V ,...V

times required by this process. Naturally, any surrounding it and on a computer-generated
other stochastic prccess may be substituted for uniformly-distributed random variable. The

the linear model. As before, only the texture simulations are generated pixel by pixel

measurements required to es' rhate the parameters along a row until each row is complete. Pixel

corresponding to each mask need to be taken. This generation along the edges of an image can b2

number depends on the spacing of the pixels in the harnled in a variety of ways but in section 4

first mask, which should be a power of two. Ocher pixels in these border regions were assumed to bei'
odd-shaped kernels dnd kernels whose spacing is any random value, 0 or 1, if they were outside the

not a power of two could ;)e designed to form image boundaries.
space-filling sets. Most would require more P similar approach could be used to generate
models to be estimated and would provide little
additional information, multi-grey-level textures. For a texture

containing g grey levels, qN+l different

Texture simulations using this method are functions, P(VpI•/V 1 ,.. .VN), must be stored.
shown in Figs. 18(e), 19(e) and 20(e). Only a [etually only (g-l).gN are required as

slight inprovement is seen in some of the texture IIý P(x,At1,...,VN)=I for all Vi). Storage

simulations over the synthesis done by the earlier liitations are aeon reached. Also estimation ok

single linear model. Most of these textures are P(VN+I/I,.. ) is difficult as multiple
apparently well simulated by a carefully chosen occurrences of the pixel patter ,...,V may not

model and the results are not critically dependent exist in the parant texture. Therer.ore even
on thu coarseness of the textures, without .,to:age limitattons the problems of

estimating P(VNI/V 1, .. ,VN) from a given parent
A word of caution should be added concernirg textuie, which represents the distribution of VN+l

the computations involved in the linear model given the values of V 1,...,VjN is complex.

coefficient calculation of this method. During
the later stages of the skip-generate method, the This estimation problem no doubt has a number

pixels in the generation kernel become highly -if ad hoc solutions. The problam is basically

correlated as the distance between them decreases that-ori-rg,: N and/or large g, there may not be
with each pass. This may cause the correlation or a suitable nuiber of occurrences of the pattern
covariance matrix of the model to be VI,...,VN to adequately estimate the distribution

ill-conditioned. lb avoid numerical problens, the P(VN+/V ,...,VN) given a finite sample size.
number of variables entered into the process, and bAfen hiough a certain pattern nver occurs or

therefore the nu•nber of steps involved in the rarely occurs in our sample parent texture it is

matrix decomposition process, should be kept to a not implied that such a pattern is impossible and

minimum in some cases. The use of ridge will never occur in our simulation synthesis. We

regression techniques [11] might also be might often find numerous occurrences of this
consider,, .
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pattern if our sample size or the size ot our texture. This comparison is made by passing the
parent texture was increased, especially in noisy kernel currently present in the simulation process
and fine--structured textures. But as this very Over the parent texture and computing the distance
large sample may not be present, we must estimate function at all possible points (see Fig. 13).
P(VN+IlV ..... VN) for all V1 ..... VN based on Lenoting the pixels in the parent texture by X' 4  I
available samples. i,j=0,... ,v- and the pixels in the kern'a

VI,...,VN by Yi,j, we can compNte a comparison
one approach would be to use sample patterns image

which closely resemble but which may not be
exactly the same as each pattern (V1 ,...,VN).
That is in a pictorial sense, we use patterns of RMSDa,b = "I (X i+a,j+6-yi,j) 2Wi,j (21)
(V ... ,VN) which look "close to" the pattern for
Ikc we are attempting to estimate
P(V I/VI,...,JN). Therefore samples in our where
sanjple parent texture may be used to estimate
numerous P(V, /. and not just thase they 1 1
fit exactly. TIe concept of a distance function WI = )2+I =
must be tw~ed to numerically define "close to". w~ _i-iNEXT7(22
Given two patterns, one from our sample texture

and the other from the condit. onal probability of where R is the euclidean distance between pixel
the kernel we are attempting to estimate, the Y..- and the kernel eye YNFI\ arnd the coordinates
distance measure can be used to determine the ot'the eye are given by (i NEX- .
value of that sanole in estimating
P (V14+ V,...,V . If the fit between the kernel As the first step in comparing a given kernel
pattern and t e pattern in the sample texture is Yi,g to all kernels in the parent texture, for
good the associated value of VN+ 1 in the parent eac point (a,b) in the parent texture, ignoring
texture will be valuable in estimating edges, the WMSD is computed resulting in an image
P (VN+I/VI,...,Vd. of MSD's. Where the fit between the generated

kernel Y1 J and the image Xi,j is good, we would

Normally, when N and g are small or when we expect WMSDa b to be small. The snallest IAMSD
have many samples for any given V1, ... ,VN, we can represents the "best" fit according tc our norm.
use the histogram of the associated VN+1 to V%' could choose the YNEW associated with thisestimate P(VN+,I/VI,..V Here the relative best fit at point (a,b) to be our next pixel in
number of times a partic uar value of VN+l occurs the generation process, however this can cause
given a pattrn indicates the conditional problems. First of all, the generation process
probability we are attempting to estimate. This would "lock in" on the parent texture and the
;as discussed in section 4. Wnere a distance generated texture could very well become just an
measure is used instead, a good fit could be exact copy of the input parent texture. Second,
considered to be synonymous with high frequency of we know ideally that YNEXT has a distribution, not
occurrence of that pattern and a poor fit with low just a mean. In the autoregressive model of
frequency of or ,rrence. section 9 we gave YNEXT a distribution by adding

random noise to it. Aftlrough this could be done
If such a method of estimating these here, such an approach wuld fail to use

conditional probabilities is used we are still additional information contained in the WMSD
faced with a huge storage problem. For this image. There may be a set of points (a,b), all
method to be practical, the storage requirement exhibiting a good fit to the kernel pattern Yij.
must be reduced. From an information standpoint, In fact, the best fit may have a noisy Y and
it is interesting to note that a method of the other good fits could provide informatlon to
estimating N-grams or conditional probabilities improve the prediction of the Yja' in the
PCVN+J/lI,...,VN) Irom a sample parent texture generation process. Using a set of best fits is
image produces g '•± data values from M pixel equivalent to increasing our sample size. We look
samples where M is the size of the square parent at a set of similar patterns to pick our YNED.
texture image in pixels. For large g and N this
is a drastic inr-.easa in data. But the actual At this point there cre imwierous ways to
Information content can really never be greater proceed. Logically those patterns with the "best"
than that content of the sample parent texture fit should provide better estimators for Y so
imaje. Therefore, this M value represents an some kind of weighting decision is ne to
upper bound on the amount of data we should use to choose the relative importance of tU.e 1i4D's
generate a texture simulation. Any amount of data found. If we search through the MibD image and
exceeding this will contain redundant, useless find the minimum value, WMSD, and scale all the
data. WMSD's by that we form a new mzage MAXI

Combining this concept of upper bound with WMSD
the idea of forming a distance measure to compare u min (23)
two te-uture kernel patterns leads to a "iew texture MAXa,b = ,SD
synthesis method. In thiz nethood, we generate the ab

next pixel based on the pixels in the kernel
surrounding it (see Fig. 5(b)) and their This image has the value 1.0 at the best fit point

comparison to similar kernels in the parent and values 0 < MMXI < 1.0 elsewhere.

77



Here we can look at the MAXl(a,b) image and processor is dedicated to the task. About 5.5
study its range. If 0.16 < MAXI < 1.0 it is days of dedicated time on an AP120B were required
implied that the worst fit yields a 0.16 value, to generate each texture.
Sor0ehow that worst fit should be translated to
imply that the probability of choosing the YNEXT Although this method is of little practical
associated with that point (a,b)wor t is nearly use due to the computational complexity of the
0.0. lie simplest wey of doing that Is to take algorithm a few points should be made. With
powers of the image MAXl(a,b). The maximum constantly increasing computer processing speeds,
remains 1.0 while ar-ller nombers aproach 0.0. a simplified version of this texture simulation
For exanple (l.0)16=1.0 but (0.16)iu'-xl0-8. We method may be implemented in the near future. It
do this to obtain an ad hoc estimate of is even possible that such computations could be

P(YNT/Yi.i). After experimentally studying the performed by an array of microprocessors. In any
values of NAXl(a,b) and its powers, the value of case such brute-force approaches are simple and
16 was chosen and a new image PDFUNS could be made cost-effective in the future. The

16 results also indicate visually the amount of
PDFUSapb = (MAX )a,b (24) texture information present in a 55 pixel window(see Fig. 14) because at each pixel generation

was used tU estimate the probability density step, the next pixel in the Markov process depends
function PtYNEMYi, ). PDFUNS is then scaled so on only the pixels in this neighborhood.
that PDFUNS (a,) =1. Finally a uniformly
distributed random variable, r, [0,1] is generated Finally, this approach is admittedly ad hoc.
and a point (c,d) is found such that Numerous distance measures could replace the one

c-i d-1 chosen in this work and each would give different
results that might appear better or worse. It is

1 PDFNSa,b + PDFUNSc,b < r always important that the process be random and

a-1 b b-1 not merely copy the texture sample. If the
simulation region is much larger than the parent

(25) sample, a deterministic process will quickly
c d generate patterns that can easily be seen to

PDFUNS + PFUNS <r repeat. In other words, the histogram represented
P a,b E D b by P(V N/VI,...,VN) should rarely be a delta

a=l b b=1 function. A reduction in the number of

computations could be made if the kernel was
The YNEXT associated with the kernel shape at non-contiguous. Also, better results could
(c,d) is then used as the next pixel in the probably also be obtainid if the kernel window was

generated image. The process is continued until a larger. The shape, contiguity and size of the
full texture image is generated with the kernel kernel in this study was chosen primarily for
window moving one pixel at each step, row by row. computer programming considerations.

In an indirect way, this is equivalent to The results from this best-fit texture
generating a random variable having any synthesis method are very pleasing but the number
distribution using the desired cumulative of computations required is large. Other similar
distribution combined with a Lniformly distributed algorithms could be developed which are simpler
random variable (which is easy to generate). In and could possibly produce even better results.
other words, uniformly-distributed deviates are With the decrease in computation costs and the
transformed to deviates having the desired increase in processor speeds of future computers,
distribution using the inverse cumulative density such texture synthesis methods could be easily

function. This is frequently done in simulations. implemented in the future.

For a kernel containing 55 pixels (see 14. Conclusions
Fig. 14) passed ov r a 128x128 parent texture
approximately 7.2xi02 operations (additions or The N-gram model of section 4 was an
subtractions) are needed to get the W4SD image extension of earlier one-dimensional studies
defined by Eq. (21). Another 2.6x105 are required applied to two-dimensional natural textures. The
to find the next pixel according to Eq. (25). results were very good even with the severe
therefoil, to generate a 512x512 texture requires constraint imposed by the upper limit on the
1.96x10" (2 trillion) operations. number of pixels allowed in the generation kernel.

In section 8, the binary linear model, which was
iesults from texture synthesis done by this used to determine the contents (shape) of the

method are shown in Figures 18 (f), 19(f) and generation kernel (see section 5), was used to
20(f). Each of these images is 512x512 pixels. A generate binary textures. The textures generated
128x128 section of each original (parent) texture using this model were nearly equal in quality to
was used for the simulation. Bark exhibits very those of the more complex and storage-consuming
large macro structure and this is lost in the N-gram model. khe N-grin model of section 4 uses
simulation. Still this simulation is better in a generation kernel w mose contents (shape) depends
many ways than those obtained using other models. on the linear model. Therefore, the nunber of
The large number of operations makes this process computations required in the statistics collection
very time consuming even when a pipelined portion of the N-gram model necessarily includes
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shortcomings of each method will constantly Approaches to Texture," Proc. of the IEEE,
indicate where future work can be done. vol. 67, no. 5, May 1979.
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(a) origna (b.) N-gram

(c) Line-ar mDe~a

Fig. 16. BirA-.y water.
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(a) Original (b) First-order linear +Iodel

(c) Second-order linear model (d) gecrnd-order lic.•Ar model witn nonstationary
noise

(e) skip:-general mo~del (f) Best-f it movdel

Fig. 19. Water.
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TWO HIEFARCHICkL LINEAR FEATURE REPRESEITATIOXS.
EDGE PYRAMIDS A14D EDGE QUADTREES

Michael Shneler

Computor Vision Laborator7, Computer Science Center
University of MaryLand, College Park, MD 20742

tegfms, ar L'obs. The use of pyramids in linear
feature analysis is uignifAcantly more c:mplex

ABSTRACT then in region analysis. This is beeause a pyramid
is well suited for representing images whose mijor

Two related methods for hierarchical rc-re- features are two dimensional. Such features tend
•sntation of cirve information are, presented. to retain their integrity and remain recogniratle
'irst, edge pyramids are defined and discussed. when lorer resolution versions of the Ii.Be are

An edge pyramid is a sequence ot successively constructed using a simple rule such a- averasirg.
luwer resolution images, each image containing over siml' local neighborhoods. In contrast, the
a summary of the edge or curve information in its important feat"res of edge or curve images are
predecessor. This summary includes the uverage corcenkroted in a small prcportion rf the image,
magnitude and dO.rection in a neighborhood of tht and it is the poea.ions &n0 orientations of the
preceding image, as well as an intercept in that edges or curves that are the important inforation
neighborhood and a measure of the error in the in the image. This paper provides a ettnod of
direction estimate. An edge quadtree Is a varn- constricting edge pyramids thrt allowe the advan-
able-resolution rapiesentition of the linear teges nf the pyramid structure to be applied to
information in the lmaa. :t is constructed by edge and curve images. Some of thene advantages
recursively splitting the image into quadrants include the comprersion of date to manareable size,
based on ampnitude, directlxi0 and intercept in- and the Ability to direct costly analysis in smell
formation. Advantages of the edge quadtree repre- regions of the original image, or set pnranaters
sentution are its ability to represent several such as thresholds. Projecting down from a given
linear features In a single tree, its registration level in the pyramid also gives rise to an Image
with the original image, and its ability to per- in vhich all the features are of a known minimum
form wany common operations efficiently. size, and which hAs had nuch of the noise smoothed

out.

A system has been implemented that build&
pyramids from edge images, and can reconstruct

INTRODUZ.TION edge images from low resolution levels in the
pyraoid. This system includes an edge enhancement

Edg~s provide much information about the Pchems that is interesting in its own right. It
contents of an image. Ofteu thii inforu&tion is also shows empirically the abil).ty of an edge
hard to interpret because of the large amounts of pyramid to retain most of the useful. information
data involved and the existence, of spurious edges at low resolutions, end the ability to reduce tie
zhat arise froa noise in the Laage. This paper amount of noise in the image.
presents two related approaches to representing
edges that attempt to overcome some of the diffi- The edge quadtree representation uses the
culties in analyzing .edges. The first approach is "me information as the edge pyramid, but has the
bised on the usu of a pyramid, or sequence of ability to change the resolution of the rapresenta-
Images, each a lower resolution version of its tion to accou.,t far the edge inftrmation in the
predecessor. The second invotves a variable resolu- imqge. Thus, where edges are long end have
tion representation, In which the local consistency coA.-istent directions, large portions of the ec.er
of the edges determines the resolution at which, can Ne represented by leaves high up in the quad-
they are represented. This approach builds a tree. 14here edges are close together, however,
quedtree from the image, with leaves in the tree or at corners, mach smallir leaves may be needed
storing information abo%t the edges that pars to represent the edge information. This gives
through square subregions of the Image, Both of rise to a polygonal approximation of the curve
the representations are able to repronsent not only information. The quadtree is shown to be useful
edges, but any linear informati,"n for representing several edges or curves in a

single structure, in contrast to other represents-
Many researchars have taken avancage of the tLions like the strip trees of Ballard ([11), the

pyramid atructurt to devise viarious ,ffIcient upright rectangles ol Burton ([4]), and the chain
iaage-processing algorithms ([8], [14), [30], [311 , codes of Freeman (1181). The representation allows
[321), "osft f theas alsorithitu, haow.-.e'r, muine many common edge operations to be performed effi-
dealt with Imagaesontaining cxtsnde* homogeneous ciently, and the fact that It is in registratiort
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with the image, and with ordinary quadtree repre- shown in Figure 1. The method is based on the
sentations of region-like information bullt from observation that the central 2 Ly 2 regions are
the image, simplifies interaction between region disjoint and cover .hc picture. Titus, by first
and edge operations. finding the best path through the central regions,

and then extending it to the full 4 by 4 neighbor-
2DGE PYRAMIDS hoods, the complexity of computation is significantly

reduced.
Eu ilding an ed._ pyramid

Each point in an edge image contains two pieces
A pyramid to he used in edge or curve analysis of information, a magnitude and a direction. With-

cannot simply be constructed by bui~dtng an aver- in the central 2 by 2 region of each 4 by 4 neigh-
aged pyramid and then applying an edge detector at borhood, the points having the maximum magnitude
each level. This is because smoothing in the are found. Based on these values, a decision is
pyramid might cause some edges tL be missed, while made as to whether or not an edge exists in tO'e
those edges that are found will be displaced rela- neighborhood!, and, if an edge exists, what kinl of
tive to the o•-iginal image because the edge detec- edge it is.
tor !s operating on a different image. Were it
not the case that direction information is crucial If the maximum value is greater than some
in edge qrrilysis, a pyramid could be constructed minimum (currently 2 in the implementation) and the
from an elge magnitude image by using the maximum next to maximum value is greater than the minimum
value of the n•agnitude in each neighborhood of the value, an edge with two points in the central region
image as the value of a point in the succeshor is assumed to exist unless the directions of the
level of the pyramid. Such an approach has been two points are not consistent (i.e., differ by more
used to construct a pyramid of line information than 45 degrees). If one point is significantly
(Hanson & Riseman, (71). greater than the rest in the central region, the

assumption is made that an edge passes through the
For the purposes of this discussion it is 4 by 4 neighborhood, but only touches one corner of

assumed that an edge image has been constructed the central 2 by 2 region. If no point differs
with information stored at the pixels through significantly from its neighbors (i.e., by more than
which the edges pass. In order to construct an 2), no edge is assumed to pass through the 4 by 4
edge pyramid that preserves as much information neighborhood. It would be represented, however, by
as possible between levels, certain information the adJinent neighborhood through whose center it
must be present at each point of each level, as passed.
a sumer, of the information of the corresponding
neighborthood of its predecessor. In the implemen- It must be understood that two kinds of direc-
tation to be described below, the neighborhoods tion information are used in evaluating edge contin-
were of size 4 by 4, with overlap between adja- uation and edge consistency. First, there is the
cent neighborhoods. The minimum information to direction established by the edge detector as art
be stored at each point is an estimate of the estimate of the direction of the edge through a
magnitude and direction of the edge(s) through the point. Second, there is the direction from a point
corresponding neighborhood. in addition, an inter- in the grid of the image to another point. For
cept. point is needed to fix the position of an edge example, a point bas eight immediate grid neighbors,
in a neighborhood. A measure that is also useful at angles of 0, 45, 90,..., degrees around it.
ia an indication of the error in the direction These fixed angles, together with the directions
e'Drimate. Errors will usually be high at corners calculated for edges at a point and its neighbors,
or whete more than one edge passes through a neigh- are used to esta.lish the continuity and consistency
borhooi. The error term can be used to signal of neighb'.iLng ed,.e points.
such situations, and cause higher levels of the
pyramid to ignore such regions. This gives rise An edge with two points pasEing tarough the
to a class of edge quadtrees (Section 3). central 2 by 2 region may consistently be extended

in three ways at each end (Figure 2a). The asaump-
Thus, it is necessary to provide a meatis of tion made is that edges do not change direction too

estimating the magnitude and direction of the radically (i.e., by more than 45 degrees per pixel).
edge(s) passing through a neighborhood, and an Thus, instead of looking for all possible sequences
in~ercept point for each edge. To simplify matters, of four points through a 4 by 4 neighborhood, two
aod to prevent tie %mount of information stored at sets of three continuations are all that need be
each pi.4nt from growing in an unbounded way, each examined. The directions of these points are
neighborhood i!. restricted to having a single edge required to be compatible with the two-point edge
pasoing through it. Should more than one edge pass for them to be considered as eligible for continuing
through a neighborhood, the best edge is sought the edge. Should more than one extension be found
vsing the following rrocedure. at each end, the best is chosen based on the grid

angle between the points, their directions, and
The neighborhoods used in the implementation their magnitudes. The best extension at each and

"•ere ot size 4 by 4, with eL 'i neighborhood sharing is used to adjust th-. magnitude and direction of
twn rows with ',ts vertical nt - ;borbors (North and the corresponding central edge nolnt.
South of it), and two columns with its horizontal
neighbors (West and East). Th- neighborhoods are
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the ed.gepint _______4

For one--point edges there are five possible The results can often be improved by aprlying the
extensions in t1'e 4 by 4 neighborhood (Figure 7.b). best edge routing discussed above.
The best compatible extension is used to adjus'a
the edge paint here too. (Note that although only Examples
two eytenrions are crnpAtible with the assuwpt ion
that edges bend gradualy, L"he other three points The edge images for the examples preseeted
must be examined to allow for the caue where an below were obtained applying a zero-crossing adge
edge termnnates inside the neighborhood). I'V no detector (Herr & Hildreth, [11]) to gray level
compatible edge extensior can be found, the edge images. The edge detector returns magnitude and
magnitude is de-reased, direction values for points corresponding to zero

crossings in the Laplacian or second directional
The abovc process is applied to all 4 by 4 derivative of the image intensity. The zero

neighborhoods in parallel. It may be iternted to crossings are approximated by the zero points of
allow informpation to propagate along the elges. the difference between two Cuassian-like functions
Thp result is a preferred edge through each neigh- with different standard deviations. The Laplaciin
borhood. These chosen edges are used to construct is calcalated using the hierarchical discrete
the edge pyramid. correlation method of Burt (M3]). For each zero

crossing point, a 5 by 5 Prewitt-like operator is
The process that actually constructs the used to give magnitude and direction information.

pyramid is much simpler than that which establishes The advantages of using a uairo-crossing detector
the best edges. For each neighborhood, it must are that the edges are thin and the boundaries are
calculate a magnitude, direction, intercept, and closed curves. The edge pyramid process will,
Airection error value. The magnitude is calculated however, work for any edge or curve image.
as the mean of the magnitudes in the 4 by 4 neigh-
boihood. The direction is calculated as the mean The first example shows the entire process in
of the directions o" those points in fhe nei,3h- a step by step way, using a binary image of a
bboehood with non-zero magnitude. The error term square. For more images, only the magnitude values
is the square root of the sum of squares of produce meaningful pictorial displays, and only
d.fferences between the individual directions these Images will be shown in later examples. In
a.ai,. the mean direction. The interccpt is one of all the examples, the results of a 16-fold com-
four values, denoting the position 3f the maximum pressicon and a subsequent reconstruction are shown.
mA. aitude point in the 2 by 2 central region of
the neighborhood. The values arc only calculated Figure 3a shows a binary Image of a bright
for a region if an edge actually passes through square of size 32 by 32 centered in a 64 by 64
the central 2 by 7 region. These values are suffi-- Image. Figure 3b shows the result of applying the
cient to reconstruct the edge to within the error zero-crossing edge detector to the image, while
tolerance. Other, more complex pyramid construc- Figure 3c shows the image resulting from one itera-
tion methods could be implementel. For example, tion of the best edge procedure. In both cases,
it would be possible to use information high up the top image is the direction image, and the
in the pyramid to alter decisions made earlier, bottom image is the magnitude image, both three-
Because a decision about the edge through a quad- holded so chat all non-zero points are displayed.
rant is made based only on local infozmation, it After the best edge procedure has been applied, the
might be found that a different decision would have directions of neighboring points are more consistent.
made the edges higher up in the pyramid more con- This in the reason for the slight lengthening of the
sistent. By backtracking to lower levels and two short line segments at the bottom of the second
altering the decisions made there, perhaps a more direction Image.
informed result would be obtained.

Figure 3d shows the four 32 by 32 images pro-
Note that more than one edge might pass duced by the edge pyramid program. The Imagew in

through a neighborhood. In this case, it can be the bottom row are the magnitude (left) and the
expected that the error term will be large, and intercept (right)of each point. Those in the. top
the reconstruction less reliable. Reconstructing row are the dire.:tion Image (left) and the error
a level from its successor is also a simple process, in direction (right). All images are thresholded
although rophicticated and complex methods could so that non-zero points are displayed. The
be devised that would produce improved reconstruc- important thing to notice here is the error image.
tions. The method that was implemented makes no The only places at which errors in direction are
use of the error term, and does not require adja- detected are the corners.
cent neighborhoods in the reconstructed image to
be consistent. The process simply expands each Figure 3e shows the results of applying on,
-oint to a 4 by 4 neighborhood, and assigns the iteration of the best edge procedure to the 32 by
.ean magnitude and direction stored at the point 32 images, and Figure 3f shows the 16 by 16 Images
uo each bdge point in the expanded neighborhood. produced by the pyramid process. The reconstruction
Points are chosen as edge points by requiring the algorithm is applied to the 16 by 16 images in
edge to pass through the intercept point, and to Figure 3g, and to the reconstructed 32 by 32 Images
lie along the assigned direction. The reconstruc- in Figure 3h. The results of the reconstruction
%ions that result are usually very reasonable, illustrate the ability of the edge pyramid to
with the errors occurring only where there are retain full information in regions where there are
sharp corners, or where edges are close together. long consistont lines. It is only at the corners
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that information is lost, and, in this case, a Edge quadtrees are similar to the trees des-
simple extension algorithm could be applied to cribed above, except that the information stored at
restore the corners, each node includes a magnitude, a direction, an

intercept, and a directiona) error term. All the
Figure 4 shows the results of running the information about the eage that is stored is used

whole process on the edges produced from a gray in constructing the quadtree. As in the gray leve.
level image of a tank (Figure 4a). The original edge quadtrees, a class of edge quadtrees can be defineu

h magnitude and the enhanced magnitudes are shown in based on the directional error term.
Figure 4b. Figure 4c shows the first level of the
pyramid, the best edges found at this level, and The construction of an edge quadtree proceeds
the second level of the pyramid. The first level by first examining the magnitude term, then the
of reconstruction and the final reconstructed direction and direction error terms, and then the
image are shown in Figure 4c1. Figure 4e shows the intercept term. If a node has a sufficiently low
result of threbholding the magnitude imageni, all at magnitude (i.e., no edge exists), then no subdivi-
the same threshold value. It is clear that the sion is performed. Similarly, if the error term is
important information has 'een retained. A simi. sufficiently small, no sabdivision is performed,
lar sequence is shown in Figure 5, starting from a with one exception, as fillows. It may happen that
gray level image of part of an airport. a number of parallel edge segments run through a

quadrant, so that the direction term is consistent
Figure 6, iinally, shows what happens when an with the data, and the error is low. Thus, a

image has sharp corners and inconsistent edges division based only on the error would not be pea-
that occur close together. While the result of formed. It is clear, however, that the quadrant
running the process is still clearly recognizable, does not represent the data at a sufficient leve'. of
the edges have been broken up into very short detail to enable the set of parallel segments to
segments at the corners, and the reconstructed be reconstructed. Thus, whenever the error term
image is of clearly inferior quality to the ori- falls below threshold, a further check must be made
ginal. to ensure that the intercept points in the quadrant

are consistent (i.e., they lie along a line in the
EDGE QUADTREES direction of the direction tern). Should this r~oP

be the case, the quadrant must be subdivided. A
A quadtree is obtained from a binary image final requirement for an edge quadtree is a flag

by successive subdivisiun into quadrants. If the that is turned on should an edge terminate within
original image is homogeneous, a single leaf node a quadrant. In this case, the intercept will be
is created. Otherwise, the image is divided into the point at whicci the edge terminates. The
four quadrants, which become sons of the root node. result of applying this process recursively to the
This process is applied recursively until all image is a quadtree in which long edges that are
terminal nodes are homogeneous. Binary quadtrees nearly straight give rise to large leaves, or a
have been shown to be useful in representing large succession of large leaves. Near corners, or
images compactly, and many algorithms have been where edges intersect, much smaller leaves a,,e
developed ior efficiently applying image processing needed, perhaps as small as individual edge elements.
techniques to images represented by quadtrees A feature of edge images is the low percentage of
([2], [5), [6], [9], [10], [19-29]). points that contain interesting information. This

means that an edge quadtree can be expected to
For gray level images, a class of quadtrees contain many large leaves where there are no edges

can be defined, based on the brightness character- at all.
istrics of the image. The root node represents
the whole image, and typically stores the average Figure 7 shows theedge magnitude image for the
gray level. If the image is sufficiently homo- airplane picture of Figure 6, and the levels of

geneous (i.e., if the variance in gray level is the edge quadtree that are not empty (levels 0, 1,
not too great) no subdivision is performed. Other- 2, and 3). Note that the leaves are upright square
wise, the image is divided into four sublmages, blocks in fixed positions and that the shape of
and four children of tne root are constructed. Ae the quadtree is dependent on the global co-ordinste
long as the variance in any quadrant is higher than system of the image. This is characteristic of all
a threshold, the process is recursively applied. quadtrees. It is one of the major differences
The result is a tree that represents the image to between this representation and the strip trees
a degree of a-curacy dependent on the threshold. proposed by Ballard [1] (Section 4).
By changing the threshold on the variance, a whole
class of gray level quadtrees can be constructed. One of the advantages of the edge quadtree is
More generally, a class of quadtrees can be con- that it can be used to represent an Image that may
structed using piecewise polynomial fits to the contain more than one curve. Of course, a separate
data in each quadrant. Gray level quadtrees are quadtree, perhaps smaller than the image quadtree,
useful for image smoothing (Ranade & Shneier, can be used to represent each curve, but it is pro-
[17]), shape approximition (Ranade et al., [15]), ferable to use a single quadtree, both in order to
and segmentatnn (Ranade, [16] wu at"a0., [331]). maintain registration with the image and for

compactness. Each curve In the tree can be named,
and all terminal nudes repres-mnting part of a curve
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can be marked with the name of the curve. In Many operations commonly applied to linear
addition, reg~an-like information can be made avail- data are facilitated by the quadtreo representation.
able in the same structure, simplifying the inter- For example, to find the length of a curve segment,
actions between regions and linear features, the tree is traversed starting at the root, and

Notice that the quadtree for a closed curve and looking at nodes until the first leaf noie belonging
that for the rtgion enclosed by the curve have to the segment is found. The ltngth contvibuted by
cloqely related shapes. this node is calculated as the length of a 1'ae

through the intercept with direction given by UL,e
If only one linear feature is represented by r direction component, and bounded by the node's

quadtrte, mary operati.ons become very efficient. borders. To find the rest of the nodes in the curve,
If more than one curve is represented, however, some the FIND-NEIGHBOR and FIND-CORNER algorithms defined

of the. operations need to be dot'e at a higher re- by (Samet,[27]) are used. They are applied on each
solution, in order to ensure that the correct curves side in the direction given by the node's direction
are involved. A way of alleviating this problem is component. Nodes that are further away from the
to essign the names of curves passing thiough a leaf's direction than is allowed by the error toler-

quadrant to non-terminal as w;ll as terminal ance can be ignored. The lengths of the nodes
nodes. A lx>uid has to be put (.n the number of found in this way are added to the curve length, if

names allowed, however, because this may not be they have the correct name. Each new node after the
limited. All non-terminals that have more named first will have at most one successor. When no more
curved segments passing through them than the neighbors can he found, the length has been calcu-
bound allows can be flagged. When curve operations lated. For closed curves, the original node must

involving flagged nodes are executed, the descen- be flagged to ensure that the process termalnates.
dants of the flagged nodes must be examined recur-
sively to find the first one with the required names. Other operations are easily defined as modifi-

cations of regular quadtree operations. The dis-
Many operations that are useful for manipu- tance from a point to a curve can be calculated

lating edge and curve information can be implemented using a variant of the distance transform algorithm
efficiently using edge quadtrees. Most of the (Samct, [25]). Instead of finding the distance
algorithms are adaptions of quadtree algoritt.s for from a point (or the center of a BLACK node) to the
region representation. Only the broad outlines and nearest WHITE, or boundary point, the distance to
necessary modifications will be given here. the nearest curve point is found. Other algorithms,

like union ax'd intersection (Hunter & Steiglitz [9],
First, an algorithm is presented for naming ShnEier [28]), require almost tio alteration.

each curve in a quadtree. It Is bascl dxrectly on
the algorithm for finding connected components of Interactions between region and boundary infor-
an image represented by a quadtree (Samet, (21]). mation are natural in this representation because

First note that a leaf node can have no more than of the registration of the images. Operations like

nine different curves pissing through it. This is the Superslice algorithm (Milgram [121)can be per-

the number of "smooth" continuations through a formed on the quadtrees by taking advantage of the

sequence of three pixels, assuming less than e 90 information contained in the shapes of the trees.
degree change of angle between pixels. Thus the The cuperslice algorithm attempts to find the best
number of names at a leaf is bounded. (It in also segm(:ntation of an image by matching edge and region
necessary to assume that two or more curves cannot information. A number of thresholds are applied
have arcs in common). to the image, giving rise to various new images.

Each of these images is matched with the edge image,
The algorithm involves three phases. The first and that with the best region/boundary fit is

pass assigns names to eaich curve node in the quad- chosen as the segmented image.

tree by starting at the North-West corner of the
tree, and examining the South and East neighbors of In the quadtree, this operation can be simpli-
the curve nodes. If the direction of a neighbor is fied and made more intelligent. Starting with the
compatible with the node (i.e., within the error edge, and noting that the shape of the region
tolerance) and its intercept is also compatible quadtree is constrained by that of the edge quad-
(i.e., lines up along the common direction with the tree, a class of candidate thresholds can be stored
node's intercept), the neighbor is given the same at each leaf node in the quadtree, each candidate
name. Otherwise, a new name is assigned. If a node giving rise to a region subtree with a shape consis-
is foun! that has already been named, and the node tent with the edge subtree. If, after all the nodes
is compatible, an equivalence ia established between have had candidates assigned, there is a single
the nodes. threshold that gives the correct shape (i.e., the

same threshold appears at al! nodes), that thres-

The second phase processes the equivalent pairs hold will give the required segmentation. Other-
to produce equivalence classes, while the third wise, a number of local thresholds may be applied to
and final phase traverses the tree again, and subismaes, cr an approximation to the segmentation
assigns a single name to all members of an equiva- can be made by choosing a compromise thres.told.
lance class. The names at the leaves of the tree
can be propagated up to the non-terminal nodes at
the same time, a nonterminal node being flagged if
too many names are assigned to it.
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COMPARISON WITH OTHIR MITHODS DISCUSSION

eeAnother hierarchical quadrant-based method There are two weain riasone for developing
for representJing edges is that of 0molayole and pyresmds for linear features. TLhe first is to pro-
Klinger Q{131). They recursively subdivide an vide compression of the data, for example to allow
edga Image into quadrants down to a 2 by 2 leveLo linear features to be detected from low resolution i
A number of edge patternsa are then sought in each images in a hierarchical image data base. thus

subquadrant, and, if too few of these are found, reducing the number of full resolution imges that
the quadrant is discarded. The result is a kind need to be %xamined. The seconu reason is to
of tree structure, with the ýeaves containing enable the most prominent edge features (or the
teoplate-like representations of the edge dat4 edge features larger than a given also) to be
ir them. The aein aim of this method seoms to extracted from the Image, and to discard smaller
be to discard the ateas of the image that contain features.
little or no information. For edge Images, this
can be expeottd to save fairly large amounts of It would be impractical to search a large image
storage. The edge quadtree differs from this data base for the existence of an object with a
approach in its treatvený of quadrants containing sat of known features. Rather, it would be useful
edge information. Instead of having fixed-sized tt, be able to filter out most of the imag~ed on the
leaves, the quadtree allows leaves to be of the baals of gross tests, leaving only a f1ew to be
largest si'5e consistent with the edge infor-ation examined sore closely. For vegion- or blob-like
they reprfisent. features, this ability can be provided by gray-level

pyramids or quadtrees. While the most natural frm
Othar methods that have been devised for for stosing linear information is probably a litked

representing linear Information are the upright list, it is desirable for iniformity to store line-
rectangles of Burton ([Q4]), the strip trees of ar feature information in a similar way as regional
BallareA (11]), and the chain codes of Freeman feature information. This facility is provided
([18]). by the edge pyramids and edge quadtrees presented

In this paper. Of course the represeutations are
Freeman has d#veloped one of the most compact useful not only for edges, but for any linear

and well-known lboundary representations, called information.
chrin codes. These codes represent the rciL.•Lv,;
grid positions of successive line points in a The stcad reason for building an edge pyramid
digital image. They are perhaps not as well suited is to enable noisy edges and edges that are too
to representing edge information as line inform•- small to be filtered out of the image. In fact,
Sion, but have the advantages of being compact a;d this is achieved In two ways, both through the"are not tied to any particular co-ordinate system. lateral best edge process and through the pyramid

r Burton presented a method of representing specifically to enhance good edges and suppress

polygonal lines using a series of upright rectang- bad ones, but it hap this effect except where two
lesa His work was extended by Ballard, who de- edges intersect or two edges pass very close to
fined a representation for curve information called each other. The pyramid process causes short seg-
strip trees. A strip tree ts a representation of ments to be lost high in the pyramid because, after
a curve, obtained by successively approximating a while, they fail to find good conttnuations. Ncte,
parts of the curve by enclosing rectangles. The though, that short broken edg- segments could be
structure is a binary tree, with the root node joined together if the gaps were sufficiently mall
representing the bounding rectangle of the wh~le relative to the image resolution. The main
curve. This rectangle is broken into two parts requirments for an edge to continue to exist at
at a point of mainium distance from the line join- successively higher levels in the pyramid are con-
ing the endpoints of the curve. The two parts are sistency and good continuation.
children of the root, and may be recursively sub-

divided until an error bound is satisfied. Note CONCLUSIONS
that the strip tree is not unique in cases where
more than one extreme poinz exists. Two related representations for linear infor-

mation have been presented. Edge pyramids have
All these other representat.ons are able to been shown to be able to store the important edge

represent only single curves, whila the edge quad- information in an image, even at fairly low reso-
tree representation is able to represent several lution, with the ability to reconstruct images
curves in the smeo tree. The edge a and that look very much like the originals. The main
edge pyramids are also in registration with the loss in informaicm is at intersections of edges,
image, and with region-based representations like or where edges pass close to each other. Small
ordinary quadtreea and pyramids. This gives then edges, usually representing noise, are also lost.
a further udvantage over the other representations.
Where the other methods, and particularly the Edge quadtrees have been presented as an
chain code, gain over the edge quadtx'eo is in alt.rnative hierarchical representation for linear
compactness, although the edge quadtree is actually feature information, with the ability to represent
storing more information than ':he other methods, the information at variable resolution, dep'ending
and may give rise to better reconstruction of edge on the local consistency of the data. The
information.
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Figure 1. Two neighborhoods used In constructing Figure 2. The ways in which edge points say be

pyrawids. The central 2 by 2 regions extended. a. For a two-point edge,&

are disjoint, but each neighborhood there are six conx'-tent continuations.

shares rows or columns with its neigh- b. For a one-poiu. -de, there are five

bors. consistent continuations.
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Figure 3; FigureŽ 4:
(a) (b) ()()(b)

(d) (e) Mf p. (c2) ()

Figure 3: Figure 4e
(g) (h)

Figure 3. Tle pyramid process applie.. to a 64 by 64 Figure. 4. The pyramid process applied to a gray
binary image. a. Original image of a level image. a. A FLUR image of a tank.
square region. b. The magnitude (bottom) b. The magnitude and enhanced magnitude
and direction (top) image& produced by a of the edge image of tile tank (thresh-
zero-crossing edge detector. c. Tile mag- olded so that non-zero points are dis-
nitude and direction images aifter running played), c. The first :'yramid level
the beat edge procedure. d. The first magnitude, the enhanced magnituade, and
pyramid level (32 by 32): magnitude the second pyramid level magnitude. d.
(bottom left); intercept (bottom right); The first and second level reconstructed
direction (top left); error (top right), images. e. The same process as in a aind
e. The result of applying the best edge b above, but with all images chresholded
procedure to the 32 by 32 images. f. The at the same level.
second pyramid level (16 by 16). g. The
result of reconstructing a 32 by 32 image
from the 16 by 16 pyramid level. h. The
result of constructing a 64 by 64 image
from the 32 by 32 reconstructed image.
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Figure 5:

(0) Figure 6. The pyrAeýId and reconstruetion process

(c ,'~(d) applied to a binary image of a" ipae

+ .,tt I IIi . . ... . .

-A--

(b) (C)

Figure 5e (d)

Figur* 5. The process described in Figure 4 ap- Figure 7. The edge quadtree of an airplane image.
p(zed to an image of part if an airfield, a. The edge magnitude image. b. The

lowest level (level 0) of the edge quad-
tree (individual pixels). c. Level 1,
having 2 by 2 blocks of pixel. d. Level
2, having 4 by 4 blocks. e. Level 3,
having 8 by 8 blocks.
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EDGE EVALUATION
USING LOCAL EDGE COHERENCE

Les Kitchen

Azriel Rosenfeld

Computer Vision Laboratory, Computer Science Center

University of Maryland
College Park, MD 20742

surface properties (such as reflectance), in sur-
face orientation, in illumination (shadows, for

SABSTRACT example) or in depth (causing occlusion of one

surf.ce by another). However, the interpretationA method of evaluating edge dazector out- of the cause of an edge will not concern us here.
* put is proposed, baned on ýhe local good form

Sof the detected edges. It c•mLines two desir- Brightness edges (henceforth just edges are
able qualities of well-formed edges -- good important features of image analysis, and, accordingly,
continuation and thinness. The measure has the many schemes have been devised for detecting them.
expected behavior for known input edges as a Here we are concerned chiefly with so-called
funiction of their7 blur and noise. It yields enhancement/thresholdi.ig edge detectors: In the
results generally similar to those obtained with enhancement step, an operator which computes local
measures baned on discrepancy of the detected brightness differences is applied to an image.
eager- from their known ideal positions, but it Such an operator will have a high response when
has the kevantage of not requiring ideal posi- positioned on the boundary between two regions, but
tion. to be known. It can be used as an aid to little or no response within each region. (The
threshold selection in edge detection (pick the operators discussed below also compute an estimate
threehold that maximizes the neasure), as a basis of the direction of brightness change.) In the
for comparing the perfo~rmances of different next step, the edge3 in the image are extracted by
detectors, and aa -" .~ The effectiveness suitably thresholding the operacor output. The
or vsriouR •yrs oi preprocessing OZratiools final result of processing is a binary picture,
facilitating edse ,?etection. pixels deemed to be on an edge (edge pixels) having

t.:. value 1, all others(non-edge pixels) have the
value 3.

It is of interest to evaluate the quality of

INTRODUCTION the output of an edge detector, both 1-o compare one
detector scheme with another, and also t. "itudy
the behavior of a given detector under dlifereot

ihe concept of an edg.e is a difficult one conditions and parameter settings. Several authors

to define precisely. The stimulus conditions have proposed techniques for edge evalua•:ion. In
the next section we review their work.

that cause the perception of an edge by humans are

by no means simple to describe. There are many
well known visual paradoxes in which an edge is
clearly seen where none physically exists. (See SURVEY OF PREVIOUS WORK
for example Cornsweet [1974), Dember [1966], or
Gregory [1974].) In the analysis of images by Fram and Deutsch (1974, 1975) studied the
computer, exactly what constitutes an edge depends effect of noise on various edge detector schemes.
greatly on the objectives of the analysis. For this purpose they used synthetic images composed

of three vertical panels. The outer panels were ofKeeping the above in mind, we can nonetheless
regard an edge os the boundary between two adja- two different grey levels; the narrow inner panel
cent regions in an image, each region homogeneous interpolated between these grey levels. It wis

within itself, but differing from the other with considered that the position of the edge was defined
respect to some given local property. Thus an by this central panel and only here should an edge

detector respond. Images were generated for a
number of different levels of contrast between the

In this paper we restrict our attention to two outer panels, and to each image was added

the simplest case, brightness edges, although the identically distributed zero-mean Gaussian noise.

ed'e evaluation techniques we present below are
applicable to color or texture edges as well.

Brightness edges in an irbage han'e .- ay possible were applied to these test images, and thresholds
causes in the original scene: discontinuities in iiere chosen so that the number of detected edgecoints was as close as possible to the number of
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points expected for a well-found edge, based on More relevant to the present paper, Abdou and
inspection of a sample of detector outputs. 'he Pratt provided another experimental comparison of
threshold output was evaluated according to two the various edge detector schemes using Pratt's
measures. The first, P1 , estimated what fraction figure of merit of edge quality [Pratt 1978).
of the detected edge pixels were actually edge They .sed synthetic test images very similar to
points. The second, P2 , estimated what fraction those of Fram and Deutsch above. The only difference
of the vertical extent of the edge was covered by worth remarking on is that Abdou and Pratt vary the
detected edge pixels. These estimates are possible relative strength of signal to noise by holding the
because it was known that edge pixels actually due contrast constant and changing the standard devia-
to the edge could be found only in the central tion of the added noise. Pratt's figure of merit
panel, and it was assumed that edge pixels due to is based on the displacement of each detected edge
noise could be uniformly distributed throughout pixel from its ideal position (known from the geo-
the image. mertry of the synthetic image), with a normalization

factor to penalize for two few or too many edge
As would be expected, the experimental results points being detected. Its definition- Is:

showed that edge detector performance, as measured
by P1 and P2 , improves when contrast is increased IA
relative to noise. They also demonstrated that F _1

some edge detection schemes perform consistently T= 1 +-c(d(i))
2

better than others. i-l

While their measures are directly applicable Yrax{IASLJ

only to vertical edges, Fram and Deutsch also where IA is the actual number of edge pixels de-
performed experiments with synthetic oblique tected; 1 is the ideal number of edge pixels
edges. They did this by the expedient of numeri- expected (known from the geometry of the s7gthetic
cally rotating the enhancement output until it image); d(i) is the miss distance of the i edge
corresponded to a vertical edge. It could then pixel detected; and n is a scaling factor to pro-
be thresholded and evaluated as if it had been vide a relative weighting between smeared edges, and
vertical. By this means they examined the sensi- thin, but offsew edges. For these experiments,
tivity of the detectors they used to edge orienta- Abdou and Pratt set a-l/9. Like Fram and Deutsch's
tion. parameters P, and V. , th.s figure of merit was

implemented for vertical -,Jges, but Abdou and Pratt
The approach of Abdou and Pratt [19791 i'; also present a mudificati,•n of it for diagonal

more analytic. (See also Abdou [19781.) Using a edges.
3imple model for the digitization of a straight
edge pasaing through the center of an operator's Unlike Fram and Deutsch, Abdou and Pratt used
domain, they goemetrically analyzed the sensitivity the less arbitrary procedure of choosing thresholds
of a number of edge enhancement operators to the so as to maximize the figure of merit. The experi-
orientation of the edge. They similarily analyzed mental results showed, as one would expect, that
the foll-off of operator response with displace- the figure of merit declines with increased noise,
ment from the center of the domain for straight and also again showed the superiority of certain
edges with vertical and diagonal orientations, edge detection schemes over others.

They described a statistical design proce- The work of Bryant and Bouldin [1979] is
dure fUL tCaresholu seehccion in nuisy images with different in several respects. They used real
vertical and diagonal edges. Using additive aerial photographs instead of synthetic images.
Gaussian noise as an example, they derived the Their threshold selection was based on accepting
conditional probability distributions of operator a fixed upper percentile of the distribution of
response for a numbcý of enhancemeat operators, enhanced edge output. More significantly, they
given thc existence or non-existence of an actual proposed two quite distinct edge evaluation mena-
edge. They could thus compute for each operator sures. One, called absolute grading, is based on
the probabilities of correct and false detection the correlation of the edge detector output with
as a function of threnhold and of noise ]peel. an ideal "key" output, this key being determined
By this means they showed the superiority of some apparently by hand. Their other technique, called
detection schemes over others. They also presented relative grading, is rather novel. Omitting the
a pattern-classification approach to threshold details, it is based on comparing the output of a
selection using training samples of edge and no-edge n,,ber of detectors, and rating each detector by
neighborhoods, and gave experimental results for a how often it agrees with the consensus of the other
number of edge detectors in discriminating edge from detectors in deciding whether an edge exists at
non-edge neighborhoods, using this approach. These each pixel. By these means they compared a number
results 3how a similar ordering of the quality of of edge detectors, and were able to some extent to
the various edge detectio, schemes. quantify the improvement in edge output achieved by

such post-processing as edge-linking and edge-
thinning, They also gave an example of effect of
threshold level on the absolute grate of an edge
deerctor.
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Relative grading, while an interesting idea, standard uses of comparing edge detector schmes,
suffers from a number of weaknesses. Its results the new measure can be used for selecting and
depend on the details of the consensus determina- adjusting edge operators as they are applied to an
tion used, and on the particular mix of operators actual image. For example, an edge detector three-
chosen for comparison. Most important, it is hold can be chosen so as to maximize the edge evalu-

r completely oblivious to detection errors made by ation measure. This will be the threshold which
all detectors, and may even penalize a good extracts the best-formed edges. (This parallels
detector that does not make an error made by a the work of Weszka and Rosenfeld 11979] on threshold
majority of bad detectors. evaluation for segmentation of regions. One of

their techniques rated a threshold level on the
fi Aside from relative grading, all methods basis of the busyness of the resulting thresholded

discussed above require prior knowledge of the image.) In applications where edge extraction ts
location of the actual edge, since they are more or an important part of the processing, the edge
less based upon the discrepancy between the detected evaluation measure can serve as an indication of
edge pixels and the ideal position of the edge. image quility.
This is fine for experiments with controlled syn-
thetic images, but raises questions when applied The approach we have used is based on .hat we
to real images, since the determination of edges call local edge coherence. Essentially, we examine
in such pictures is very much the subjective every three by three neighborhood of the thresholded
decision of a human observer. The techniques are edge output, taking into account the direction
completely inapplicable to images for which the output as well. If the center of the neighborhood
actual edUe locations are unknown. is an edge pixel, then we call the neighborhood an

edge neighborhood and rat* tt on the basis of two
Further, the discrepancy between detected and criteria, continu,.tion and ;.hinness, which should

ideal edge is not the sole determinant of the both be exhibited by a well-formed edge passing
quality of edge output. See Figure 1. Here we through the center of the neighborhood. Both these
have two detected edges, both of equal discre- criteria ave based on the working definition of an
pancy from the id al. However, one of them is edge given in Section 1. It should be locally line-
clearly preferable, alloce the detected edge is like, with due regard for the consistency of direction
continuous, rather than fragmented. It is clear of brightness changes. Continuation requires,
that some attention should be paid to the good ideally, that adjacent to the central pixel, along
form of the detected edge. the edge (this is perpendicular to the gradient

direction of brightness change at the center), there
Finally, none of the above edge evaluation be two edge pixels with almost identical direction

measures take any account of the edge direction which form the continuation of that edge. Thinness
information produced by most edge enhancement requires, ideally, that all the other six pixels
operators. This information is used in many of the neighborhood be no-edge pixels. The continua-

applications and is an important consideration tion and thinness ratings of an entire edge output
in determining the good form of an edge. Even can be measured as the fraction of edge neighborhoods
though a set of edge pixels may lie in the shape satisfying these respective criteria.
of a well-formed edge, something is amiss if the
estimated edge directions are chaotic. Ideally, Of course, for most images, very Pew edge
the brightness gradient direction should be ýefghborhoo~ls will perfectly satisfy these two
everywhere perpendicular to the edge, and per- criteria, because of digitization problems and
pendicular in the same sense. even slight noise. We therefore compute instead

continuation and thinness scores, ranging from 0 to
1, with the overall scores being averaged over

LOCAL EDGE COHERENCE every edge neighborhood in the output. These
scores are designed to take the value I for
perfectly-formed edge neighborhoods, dropping off

Bearing in mind the deficiencies of the above only slightly for almost well-formed neighborhoods,
techniques, we havt deve'oped an edge c€valuation but falling eventually to 0 for badly formed
measure based solely on the criterion of good neighborhoods.
edge formation, without usin- any prior knowledge
of ideal edge location. This new measure is The continuatiot. score is computed as follows,
intended as a suppicment to existing measures, not
Sreplacement. "ince it is cleat: that a measure Let top-ol represent the absolute difference
which disregards the correct locacion of an edge

cannot be a fully adequate measure (although the between two angles a 3nd 8, the difference ranging
results presented below show that it Is quite good).
For example, an edge detector that systematically from 0 toir radians. Let
mislocates edges will, by our schemes, receive an
evaluation measure equal to that of a detector a(7,0) =
which perfectly locates edges. T

However, since the new measure does not require
prior knowledge of edge location, it can be used
much more freely, in particular on images for which
this knowledge is lacking. In addition to the
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This function ranges from I for identical angles parameter Y cav. be adjusted to give a relative

Cland 8, linearly down to 0 for angles that differ biasing of the measure E in favor of well-conmecte4
by half a revolution, thea is, point fn opposite edges as against thin edges. The choice of T will

ddire:tions. It thus saamures tho extent to which also be discuated below.
the two angles agre.- ia ,direction. While this approach to edge evaluation Is a

Let us number the neighbors of au edge pixel little 4d hoc, no simpler tschniquo seemed able to

as ohown in Figure 2. Let d stand for 'he edge capture the notion of a locally vall-formed edge.
gradien, direction at the center pixel, and let We were first led to Investigate the possibility of

dl, d,..., d, stand for the edge gradient direc- an edge evaluation meamre based on good form by anton a eah of the eight neighboeTs respectlv-.i-P. observation an compatibility €oeiffciensr, for relaxa-
Let tion labelling [Pe eg and Rosenfeld, 19771. The

arrays of compatibility coefficients nhowed a Varti-
L(k) - if nekghbor k i cular diagonal tendency when derived from images

-a(d,dk)a(-,d+2) wftch clear edges which tasx far less pronounced when
ar edge pixel derived from noisy or blurred Images. We attempted

-0 otherwise. to devise an edge evaluation measure based on
characterristics of the colmptimbtlity coefficient

This function sasures how well a neighboring8characteristicseofnthe compatiabilitytcoefi e
pixel continues on the left of the edge which arrays, a~d later on characceristics of the edge

direction co-occurreuce matrices, which are closelypasses through the central pixel. It is 0 when rlie.Peiiayeprmnssoe htnn
telsted. Preliminary experimeots showed that none

the neighbor Is not an edge pixel, since no of these measures were satisfactory, although they
continuatiou exists. When the neighbor is an
edge pixel, its rating is composed of two factors: suggested that a measure based on good form could
The first, a(d,dk), measures how well the edge ultimately be developed. Several techniques based

o the neighbor agrees with on local properties of the edge output were investi-
that datthe center. The second factor, gated, culminating in the method presented here.

This measure is intuitively reasonable, and more

rk � important, performs quite well, as the experimental
- T resul•s. below demonstrate.

measures how close neighbor k is to the expected One defect of our measure (though shared by
direction of leftward contltaxatlon of the ed&,e, 1.1 others) is that it can only be applied after
based on the direction at the certer. The term thresholdina. We endeavored to remedy this by
kis the direction to neighbor k, and the term devising methods that treat all pixels as potential

4 hedge pixels, but weigh their contributions by n
d÷ 2 is at right angles to the gradiers* direction function of their edge magnitudes. Unfoc 'unataly,
and therefore lies along the edge. SiL_ .. rly we the ennimous number of low-magnitude pixels
define distorts the measure, unless the weighting iu'nction

wk dis of such a form as to be tantamount to thresholding.
R(k) - a(d~dk)e( Z, 2) if neighbor k Us

an edge pixel It should be pointed out that this approach
= 0 otherwise can be easily adapted to measuring the good form of

other features, such as lines or corners, which are

which measures how well neighbor k continues the normally detected by some sort of template matching.
edge toward the right.

Of the three aeighboring pixels lying to the EXPERIMENTS
left of the central edge gradient d.trection, the
one with the highest valva of L(k) is taken as the
left continuation. Similarly, of the three pixels We present here some experiments which investi-
on the right, the one with the best value for R(k) gate the behavior of a number of edge detection
Is taken as the right continuation of the edge. scheoes under various condtions. To permit a
The average of these two best continuations i3 comparison, we have tried to make our ez.perimental
taken as the continuation measure C for the entire setup as similar as possible to that of Abdou and
n.ighborhood. Pratt. We have used the same edge detection

schemes (although our measure also makes use of
The thinness measure T for the neighborhood is edge direction information), the same noise model

computed as that fraction of the remaining six (additive, independent zero-mean Gaussian noise),
pixels of the neighborhood which are non-edge pixels, the same threshold selection criterion (choosing
This will range from 1 for a perfectly thin edge, that threshold which maximizes the evaluation
down to 0 for a very blurred edge. measure), and for one series of experiments,

essentially the same test image.
Neither of these measures is independently use-

ful for edge evalwi.tion, as will be exrlained belao. Test Imraes and Edge Detectoru Tested
However a linear criabination of the two

Two test Izaages of edges were used: the first,
E - YC + (l-V): 64 by 64 pixels, consiated of a left panel with grey

level 115, a right panel with grey level 140, and a

serves quite well for suitable values of Y. This single central colum of intermediate grey level
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128. This we will call the "vertical edge" image. orlentation of the etrongest-responding mask, For
It is virtually the same as ont of the test images details on and references to all these operatort.
used by Abdou and Pro'-. In ordei: to present see Abdou and Pratt (1979].
conveniently edges a U.1 orientations, we cLose a
second test itaale co istl'g ol concentric light Petailed Evaluation of One Detector
rings (grey level 140) or, a dark background (grey
level 115). This image was originally generated as Before presenting an overall comparison of
a 512 by 512 image, witi. a central dark circle ot thLze edge detection sthemes, we would like to
radius 64, surrounded by threm bright rings of examine In detail the results of the edge evaluarion
width 32, these being uieparated by two dark rings on a iingle scheme in 'rder ý;o discuss the uro-
of the same width, wit'i a dark surround. The perties of the e'g,. evaluotion scasu'e l teii. For
decision as to whether a pixel should be light or this we have ,nosen the three-levl. t'i'plate matching
dark was based on its Euclidian distance from the operator becausi it performed coratiteti-ly bettor
center of the image. Then this image war reduce6 than any of the other operators ir. the comparison
to size 128 by 128, hN replacing each 4 by 4 block experiments descriUed below. Even so, tie results
with a single pixel harvi:g the average grey level of the edge evaluaMtion measure tollw much the same
of the block. The reduction Save a convet.'ent pattern for the other operators as well.
way of approximating, for curved edges, the vi.i-
tization model used by Abdou and Pratt. We tnll Figure 5 shows the histogram tf edge magnitude
this the "rings" image. While the edges in this outputs for the three-level operator applied to tlhe
test image are curved, they are locally almost rings ftage with FNR 50. and Figure 6 shows the
straight, at all possible orientations, edge magnitude thresholded at nine levels equally

spaced through its range, In Figure 7 are shown
To study the effects of noise, independent plots of edge evaluation against threshold for

zero-mean Gaussian noise was added to each of the varlo.is valuer of the weighting factor y. Figuretest images at seven different signal to noise 8 shows the same datm, but plotted instead against
ratios: 1,2,5,10,20,50 and 100. Following Pratt, the fraction of pixels which are edge pixels at
the signal to noise ratio (SNR) is defined to be each threshold, scaled logarithmically. This is

a better way of presenting the data, since it is

SNR = the selection of edge pixels that really matters,
nut the threshold directly.

where h is the edge contrast (in this case 25), and
a is the standard deviation of the noise, adjusted We see that the thinress measure aloyr (-0.0)

to give the selected values of SNR. As an extreme is of little use for edge evaluation. It reaches

case, we used an additional 64 by 64 test image its maximum value at high thresholds since it rates

caoe, ea set of isolated edge pixels higher than an even
with mean 128 and standard deviation 16. slightly blurred edge. On the other hand, thecontinuation measure performs reasonably well by

Figure 3 shows the vertical edge image, noise itself (Y•l.0), reaching a maximum value at a
Sfree as well as with the various levels of added threshold which selects quite a good set of edge

asel ashwi the variou level s of aded pixels. (This peak is more pronounced in Figure 8,
noise. Figur 4 shows the sae for the rings image. since changing the threshold near the axium pro-
At the higher signal to noise ratios, the noise is
almost imperceptible to the human eye. However, t duces only a small change in the population of edge

is quite significant to the edge detectors used, pixels. Notice that this threshold lies in the
since all of them have only small domains, valley of the histogram.) However, a clope examina-

tion shows that these edges are several pixels

Ten different edge enhancement schemes were thick, Better results are achieved with a ltwer
tested. The first group are the so-called "differ- value of'Y. For the rest of this paper we will
ential" operators. These measure the horizontal use Y-0.8, since this value seems to give the

best compromise between continuation ane thinness.I' and vertical cermponentc of the brightness change
by applying a pair of linenr masks. The edge gradient Table 1 shows the maximumvalues of the edge
direction is computed from these two components evaluation measure, and the thresholds at which
using the inverse tangent; and the edge gradient they occur, fcr the various values of Y. Figure 9
magnitude is computed either as the square root shows th thresholded edge magnitude for a range of
of the sur of souares of the two components, or as closely spaced thresholds around that at which
a sum (or sax) of absolute valines, for computational the edge eaalustion takes its maximm value for
simplicity. Three differeni. pairs of masks were Y=0.8. Even though we have chosen T-0.8, two
used: those defined by Prev.itt, Sobel and Roberts. remarks should be ade: Firstly, values of y from
Since the edge magnitude can be computed in two 0.6 shou ce simirst ly, Y
ways, this gives six methods altogether. The second
group are the "template-matching" operators: three- can be adjusted dependirig on the relative serious-

lhand compass-gradient. ness of broken edgea a&. a-dnst thickened edges, forlevel, five-level, Kirsch aagvenappictpoasI'-gneald soultb
Each of these applies cight masko at every neighbor- a given application. fi beneral,k should be

hood. The edge magnitude is taken to be the fairly high, since filli,:g breaks In edges 1w
"strongest response oit of these eight masks, and the usually a more difficult task than edge thinning.

edge gradient direction is given by the preferred
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To show that the peaks in Figure 8 are actually C ompsrison of Detectors
caused by more or less well formed edges, we give
in Figure 10 an analogous plot, but for the test Having established that ths masaure E behives
image of pure noise. The forms of the curves are well, we now present a comparison mong the tin edge
quite different, without any well-deflned peaks for enhancement operators mentioned above. Every ope"s-
the higher values of Y However, Lhis graph does tor was applied to the nest image at the seven differ-
roveal a noteworthy property of the edge evaluation ant signal-to-noise ratios, and at each noise level

seasure: Nven on as image of pure noise, it is the threshold was adjusted to maximize E. Figures
possible to choose & threshold which givts a mod- 12 and 13 show these maximum values for the differen-
crately high value of the edge evaluation measure. tial and template-matching operators respectively
At first thought, this may seem to be a defiet. using the rings image. As expected, thcse Lesults
However, on reflection, it is clear that this is show that the three by three operators ate far better
an inevitable characteristic of any such teasure than the two by two operato)rs at detecting edges in
based on local good form. Becaude of overlap the presence of noise. Among the three by three
between the neighborhoods to which the edge opera- operators, the thrae-level operator is clearly the
tors are applied, an isolated noise poi't wi~l best, and the compass gradient the worst. The
produce a correlated set of edge pixels. For other four operators produce results of ibout the
example, the three.-levc± operator will produce a same quality. The same ordering is preserved if
tiny ring. Even though this ring is highly curved, we subtract out the intrinsic rexponse for each
it is coherent, and will receive a moderate edge operator on pure noise, although the separations
evaluation score. This evaluation score for ar, not so great.
isolated noise spots can be computed analytically
as an intrinsic property of each edge detection Analogous results for the vertical edge image
scheme. For an image of pure noise, as used for are shown in Figures 14 and 15. They are not
Pigure 10, the zvaluation is somewhat lower than directly comparable, especially at the lower SNRs,
one would expect, apparently because of interfer- because the r4..gs image has a greater density of
ence between adjacent noise pixels. In summary: edges. However, some general remarks can be made.
even in a noiLy image, there will be a certain Firstly, an erplained earlier, the vertical edge
occurence of well-formed edges, either by accidental gives a hig'e-r evaluation. Secondly, the evalua-
alignment or as an artefact of the edge detection tions of the tour three by three differential
scheme used. It is not the fault of the edge eval- operators are more spread out. This can be attri-
uation measure that it reflects this unavoidable buted to relative orientation biases in the four
property of the images and detection schemes used. operators which are brought out by the vertical

edge, but which are cancelled out over the full
Figure 11 illustrates the effects of various range of edge orientations in the rings image.

levels of noise on the edge evaluation measure.
For clarity, only a subrange of the data is iiotted. Overall, this comparison is in accord with
Outside this subrange the plots for the different the findings of Abdou and Prutt. Ouc results differ
noise levels tend to converge. The results show a from theirs only when the differenco between
consistent pattern: The peaks decrease in step operators is small by both measure6. They also
with the signal-to-noise ratio. Below SNR-0, there find the trree by three operators consistently
are no clear peaks, but the shapes of the curves better thct the two by two. However, at the high-
show that the presence of edges still has some effect est signal to noise ratios, the performance of the
on the edge evalaation. klthough we have not two by two operators, according to their figure of
pursued the matter, this stggests that at% edge eval- merit, approaches that of the three by three, while
uation measure might be based on the value E of the our measure still reveals a considerable difference.
measure for the given image relative to the value This shows that while the two by two operators can
measured for the same detector on an image of pure properly locate edges av low noise levels, they
noise. But such a relative measure would be use- poorly estimate thi, edge direct ion.
ful only for cases of high noise, when E has no

clear peaks, and would not be a good means of com- By both their measure and ours, the compass
paring the outputs of different edge operators. gradient is the worst of the three by three opere-
Away from the peaks, the evaluations for the differ- tors, but tneii figure of nerit, while rating the
ent noise levels tend to become similar, while three-level operator fair3y highly, does not show
retaining the same ordering. This shows that a it as clearly superior in all cases. These smnll
poor threshold leads to a bad selection of edges, discrepancies are not at all surprising, since the
no matter how noisy the original image. two edge evaluation schemes, after all, measure

quite differert charncteristics of edgec. The
All the above results are pretty much what one general agreewont between the two schemes is encour-

would expect intuitively front a measure of edge agng: It se7 ,s bjth to confirma, in large part,
quality. They thus serve to confirm the validity the edge operator ratingo of Abdou and Pratt, but
of the edge evaluation measure. While the figures from a different perspective; 3nd also to strengthen
show the results for the rings image, the results our confidence in the usefulness of the measure E.
for the vertical image are similar, and if anything,
oore distinct, since a vertical edge can be more
cleanly digitized, and has not even the slightest
curvature.
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Effects of [reprocessing CONCLUSIONS

Quite a number -f techniques have been pro-
posed for improving tae quality of -dg- eitection. We have presented a method for evaloating the
We present here some experiments to demcinstrate quality of edge detector output based solely on the
hc4 the effect of a selection of these tect-niques local good form of the detected edges. It combines
is reflected in the edge evaluation measure E. two desiderata of a well-formed edge - good contin-

uation and thinness. This measure behaves as oneSFor coping with the effects of noise, two would like under Llh• effects of change of threshold,

commonly used techn'ques are mean and median filter- noise, blurring and other operations. The comparison
F ing, that is, each pixel in the original image is experiments show that the results obtained with this

replaced by respectively the mean or median of the measure are similar to those obtained with a mea-
grey levels in a neighborhood around the pixel, sure based on the discrepancy of the detected edge
This has the effect of smoothing out irregularities from a known actual edge position. The small dif-
dtve to noise. However, as is widely known, mean ferences between the two methods reveal some pro-
filtering has the unfortunate side effect of blur- perties of the operators not brought out by the
ring or thickering real edges, so median filtering other approach.
is often preferred since it does not suffer from
this defect. On the other hand, thickening of Like other evaluation measures, ours can be
edges can usually be dealt with by non-maximum used to compare the effectiveness of different
suppression on the edge grudient magnitudes - that edge detection schemes and edge improvement schemes
is, a pixel has its magnitude set to zero unless on synthetic images. However, since our measure
it is a local maximum among those pine]s which lie does not require knowledge of the true location of
closest to the edge gradient direction, edges, it has much wider application. It can be

used to adjust parameters, sa-ch as thresholds, for
Figure 16 shows the effects of hean and median optimum detection of edges in real images for

filtering on E for diffcvent neighborhood sizes, which edge location is unknown. The evaluation of
As can be seen, the edge quality as measured by E the detected edges can also serve as an indication
is improved by both mean and median filtering, but of the quality of the original image. Further, the
if the neighborhood is too large, mean filtering approach of using local coherence can be extended
ciuses a decrease in edge quality because ot blur- to the evaluation of other local feature detectors.
ring, while mean filteztng suffers from no such
defect, although it seerns less effective with
smaller neighborhoods. Thia graph also shows the
effect of applying non-maximum suppression to the REFERENCES
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0.6 0.8 1.0

sNR 10 0.771 0.759 0.757

Enh~anced 0.786 03.790 0.806

Enhanced & 0.841 0.823 0.805
non-malximuI
suppression

Table 2. Effect of Peleg's edge enhancement procedure on edge evaluation.
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(a)

Figue 3 Verica ede tet iage wit vaiou
levels o± noise. From left to right, top to

bottom: n~o noise, SNR - 100, 50, 20, 10, 5, 2,I and 1. (Note: these imuges are at twice the
scale of those in Figure 4.)

Figure 1. (a) z'iscout~r -ted edge, and (b) well-
connected ed~ge, to,;'. w5.LI equial displacement from
ideal edte position. (idei~k edge position shown
by dotted line, detectei' .adg,ý' by heavy line.)

4 0

5 1 67
Figure 4. Rin 'a Lest image, with various levels
of noise. Frc~r left to right, top to bottom: no
noice, SNk 100, 50, 20, 10, 5, 2 and 1.

Figure 2. Numbering systeTn f,..r neighbors.
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Figure 5. Histogran of edge magnitude obtained Figure 6. Idge pixels extracted by threarh ding
by applying three-level operator to rings Image edge magnitude (three-level operator) ou rings
at SNI 50. image at SINR 50. Thresholds, from left to right,

t')p to bottom: 10%, 20%, 302, 402, 502, 60%, 702,
80% and 90% of range.
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Figure 7. Using rings teat image at StIR 50 and thr*L-level operator: edge
evaluation against threshold for various values of parameter 1. r
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Figure 8. Using rings test image at SNR 50 and three-level operator:
edge evaluation against fraction of edge pixels at each threshold,
for various values. of parameter y.

Figure 9. Edge pixels extracted by thresholding edge magnitude
from three-level operator on rings image at SNR 50. Thresholds
'rrom left to right, top to bottom: 48%, 50%, 52%, 54%, 56%, 58%,
60X, 52%, 64% of range.
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Figure 10. Using test image of pure noise, and three level opirator: edge evaluation against fraction
of edge pixels, for various values of parameter Y.
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Edge pixel fraction (log scaled)

Figure 11. Using rings test image and three-level operator: edge evaluation (y w 0.8) against fraction
of edge pixels at each threshold, for variotis values of SNR (top to bottom curve: 100, 50, 20, 10, 5,
2, 1).

110



-
-

0.1. Sobelt sqrt

3. 8o1bel uwabs

4. Prewitt sumabs

5. Roberts aqrt

~ 06. Robert* sumabs

0.7

0.5

10 20 50 o00
•L. SN (105 sICal d ) rFigure 12. Using rings test mag:e maximum edge evaluation (Y-.0,8) a&ainst SNR, for diffeoreti.1 operators.

1.0

t 1. -lre*-1evelS2, fivo- level
•'0.9 3, Kirsch •

• !!:-a o
t

0.6

125 10 20 so 100
Silt (log scaled)Figure Z:3. 'Using rings test Ime aeximm edge evaluatloa (y -0.8) agaInst $a,, far template aatetlUoperators.

S111I



r. 1 Sobel sq:t

2. Prewitt sqrt -000

S0. 3. Sobel eumabsr . Prewiit sumab7

S. Robert sqrt 3
0 6. Roberts sumabs

S0.81

I dr

0.7-

=0ee
0.6, /7 I

1 2 5 10 20 50 100
SNR (log scaled)

Figure 14. Using~ rings test image, maximum edge evaluation Qy.0.8i) ag.ainst SNR, for differential operat!ort?,1.0
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Figure 15. Using rings test •zge: maximum edeeauto • )against SNR, for template matching
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Figure 16. Effects of mean filtering (marked o1"), rmed sizeiolwdb o-aiumsprsin(akd"1"), mediksn filtering (marked "•'\, and mean filteringfollowed by nor-marimum suppression (marked "3"), against size of neighborhood tf"r7&- I - imageat SNR 10, three-level operator, and Y - 0.8.)
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Neighborhood aizeFigure 17. Effects of mean filtering (marked "1"), median filtering (marked "2"), ;tnd mean filteringfollowed by non-maximum suppression (marked "3"), against size of neighborlood. (Uses rings test image

at SNR 10, three-level operator, and Y = 0.6.)
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1xl W 3x3 Neighborhood size x77Figure 18. Effects of mean filtering (marked "I"), median filtering (maoked "2"), and mean filteringfollowed by non-maximtm suppression (marked "3"), against size or neighborhood. (Uses rings test image

at SNR 10, three-lavel operatir, aiid y = 1.0.)
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TOWARDS A RKAI. lMF. IMIPLNEMENITATION

OFT111FK NMARR.ANI) POGGIlO STEKREO NIXIVCI WR

HI. K. Nishihara and N. G. Lro

54i Tech~nology Square

Cambridge, MA 02139

thec 3e'ir(h interv'al, nole, th.' fitct as evidelice that

IN'lI4OUCIIONthe searchI iindow may bie inipropetly posiiiopted in
ithc right nimage. If there is inire thIan onie poten-

Thais paper reports on research- -primarily at tial match in the search interval. the maitch is aim-
Miirrdsad Ploggio's 191 mcclianisin levcl-to design biguous so skip over this point.
a pracuical hardware st~erco-rnather and on the in- lcegtofheorunlsach;cracn
zeractiot. this study has had with our understand- tic choseni so that a sufficienit percentage of unique
irng of the ýrohlern at thc computational theory miatches is found. Ihc coarse-scale p~rimitive%

anSlorithim levocls k c sterandeo-mtcing10 al- allow tle use of a larger search interval, thus
goriiimprupse~~ Mi an l~~io 101andgaining disparity range in exchange for resolution
implmened b Gi'isin a Mar 11 ~SC~fS~Sand the density of matches that can be obtained.
tentwit wht i prscnty kownabot hmanMatching primitives at a finer scale-which re-

stcreo vision 121. Their research has been con- quires a shorter search interval-ran then be ac-

cingd wthe undcrsomtaing tcprincipl. Ourdbectiy- complishcd by positioning the search interval using
ing hc tere-machin prblem Ou OhJ~tIC te rough disparity information obtained from

has been to produce a sterco-itiatchici tiat operates mthn h ore rmtvs
reliably at ntear real time rates as a tool to facilitate
further research in vision and for possible applica- Marr and Poggio 1101 found that, for this
Lion in robotics and sterco-photogrammetry. At seconid approach, peaks in the rate of intensity
preseni the desigr au4 ~~~~oieof the camera change in dhc image at a given scale uf resolution
and convolutvin modules of this pro,ýec: nai !ýrt were the appropriate type of matching primitive.[ oa'i*t,'icd ar~d the design of the zero-crossing and Peaks in the rate oif intensity change along the
matwlding modules is progressing. Tbe remainder direction of the local intensity gradient--or equiv-
of this bviu~io, providos a brief description of the alenrtly signed zeio-croyssings in the socond deriva-
Marr and Poggio stereo algorithm, We then dtis- tive-corrcla'e with physical markings and edges
cuss our general approach and some of the issues on surfacc%. H-oweci-,. zero-cros~,ing-. in icsecond
that have come up concerning the design of the derivative of the iinagcare miost sensitive to details
individual modules. it the finelt scale of res;olultion. This problem

T'hee ae tw ditint aproahesto ientfy-can be dealt with b) first Io% pass filtering the

igceresarptonde stnc tapoes btenlc tion idnthelfy- image to attenuate high spatial frequiency strtirtiire

an- ringh coresonenes bea tweren poations ihe lefstist alo,- the scale of resKolution desired, It turns
and ightimaes o a tere par. Te frst s ~out that Gaussian smoothing offerss the best comn-focus on the local pattern or arrangement of somec promse for attenu~atin1g fine scale sti ucture in the

fine-scale inatchi;'g primitive, attemrpting to deter- im-,Oe % hile preserving the local georictry at larger
rmie the imiaping I4ctwcen left and right imiages scale% [7]. Marr and tlildrcth I'll found that
which best correlates these patterns [cf 5, 6, I, 4, 8, ihwa etitos ersiiteI.paino
121. Theli other approach [101 is to focus on the use cnvldimg-V(GJ aeth
of primitives%.sensitive to imiage details at dilteren; desired rcý_olt. Fut thennorc, W'(0*I)-(V2 G)*I
scales s'o thaut mnatching can be accomplished first ani 72G cpt i. bL '!(ely approximated by the
at the -Oarsest scale and then at successively finer difference ot two Gaussians tlaiming difl'erenit space
scales. 'I'lc density of such primitives in an image constants L-it norinalii "1 to have the sante volurn.'~
is tied to the scale at which they are sensitive wvhich
makes it possibibl to use a simrplc matching ruleD:SN
3uch as:

For each primitive elemtent in i/ie left imnage. look 'I he harawarc implementation project grew
in a horizontal interval in the rig/it imtage about the out of our effort in spring 1980 to construct sup-
corresponding location. If :hcre is only~ one primlitive porting hardware for a VLSI convolution chip
there t1110 Could match it, accept it as the ipiatch- being developed at that time at llughes Research
iag element. If there are no potential matches in Labs [111. A "serpentine memory" device was re-
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applications where more rapid frame rates maybe the image--to compensate for changes in suracte
preferable to ver' large image dinvensions--given depth-the ramp generator can be modified easily
the constraint of a fixecs pixel rate. to accept a dynamic vertical offset correction signal

A one-dimensional solid state CCD array from the stereo-matcher.

camera in conjunction 'Yith a scanning mirror An effort has also been made to standardize
pros ides good geonCtri. precision with large image the interface tv, the convolver so that other camera
dimcisions and no pixel flaws. The only shortcom- types can be used in the future with a minimum of
ing c0 this type of camera for our purposes i3 its difficulty. flie interface requires (1) a pixel clock
lower light sensitivity. R•is problem occurs be- signal with a frequency of up to IMHz, (2) vertical
cause the integiation time of the individual sen- sync. (3) horizontal sync, and (4) 8 bit pixel data.
sois is t•inited to the time spent on a single line The convolver accepts camera line lengths from 1
of the image--for a 1024 element array running it 1024 pixels.
-it IMilz this is about Ims. Two-dimensional sen-
sors in comparison have integration times limited CONVOLVER
by the time taken to -scan the whole frame. During
the summer of 1980, we acquired a 256 clement The convolution module was the central focus
line~ar array camera co|so-|teded by R. IBishop as a of the first half of our development effort because
thesis project at MIT. When operated at a IMHz of the !arge computational requirements that arise
pixel rate, this camera hald an integration rime of in its operation. For digital Gaussian convolution
approximately 0.25ms and performed reasonably with a 32 by 32 mask size, a minimum of 32 mul-
well under studio lighting conditions. tiplies are required for each pixel of the image.

From this we decided that an in house design- To maintain adequate precision, the first one-
ed 1024 pixel linear array scanner would best meet dimensional convolution requires 16 8x8 multi-
our requirements over the next year or so. The plies while the second one-dimiensional convolu-
cameira we developed-see figure 3-makes heavy tion requires 16 8xl6 multiplies. Using TRW mul-
use of olf-the-shclf components. A Reticon evalua- tiplier chips we are able to achieve a pixel rate of
tion board is used to operate the linear array and just under IMHi. Higher pixel rates should be ob-
most of the necessary analog circuitry is provided tainable with more parallel or analog designs such
on that circuit board. A separate analog to digital as the -lughesconvolverchip.
convcrter was designed and a third circuit board Another issue is whether to compute a differ-
was designed to generate the ramp signal for ence of two Gaussians or the Laplacian of a single
the mirror controller as well as the vertical and Gaussian convolution. Generally, given Gaussian
honzontal syncs. A controller board and closed- convolutions with a given precision, the difference
loop galvanometer produced by General Scanner ofrGaussian approach offers a better signal to noise a
Inc. is used to move the mirror, The nfitTor ratio because of the second-order differences in-
sweep is specified to be linear to within 0.15 per- volved in computing the Laplacian. The desirn of
cent of the peak to peak sweep angle and mirror two copies of the same convolution circuit w,•&ld
repeatability is claimcd to be within I second of also be easier so the difference of Gaussian was

theo The eairs hardwafrenc bfGasit n as
selected.

Our preliminary performance observations are
that the camera's geometric precis-on and repeat- i hu ima g d a ra r e s 1 bit p um-

abiliy meet o'mr requirements. The camera's light input image data and produces signed 16 bit ntu-

sensitivity also seems satisfactory and we hope to

be able to operate the camera-convolver combina- allow3 difference of Gaussian convolution masks

tion at normal office light levels. We have had with central positive diameters w of from 2 to

difficulty adjusting the balance 'controls on the about 12 pixels. In memory to memory mode on

Reticon board-for the even and odd pixel sig- the L.isp machine, a 1000x]000 by 8 bit image can

nals which are output separately by the linear ar- be convolved and the result stored as a ]000xlMO0
ray. While this problem is not significant when by 16 bit array in about 20 seconds-1.5 seconds

the camera output is convolved with a difference for convolving and the remainder for paging be-

of Gaussian mask, we may improve the analog cir- tween disk storage and memory.

cuit or to do digital compensation to support other With the completion of the linear array cam-
umes of the camera. More quantitative performance era, we have been working with a camera-to-
measurements are in progress. ccnvolver-to-display mode using a microcode loop

The overali simplicity of this design makes it to read the convolver output and write the sign

easy for us to tailor the camerak to changing re- bits of the convolution to the bit map of the Lisp

quir(mnents that may develop as the ov'erall project machine's black and white monitor. This gives
evolves. For example, should it bmcnme necessary us a real time display of zero-crossings from the
to vary the relative icrtical alignment between the camera and we have begun to use It to get a bettmr
left and right cameras as the scan prog.scs across familiarity with what the world looks like in these

terms. One quickly notices ;hit zero-crossings oc-
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cur locally in response to dhe features with the ti~.ill OWSCUet between tile LWV imnages~, collecting
largcsk contrast and they tend to form closed loops thie goodl matches-as determinecd by the stattistics
with diameters on the order of w. If thete arc sharp checking--from cach. A miajor objective of tie
intensity edges the zero-crossings follow themt In- hardware imiplemneitation, however. is speed wo It
cally and lowcr contrast or smaller features have would bc preferable to inakc the matcl.ing less
little influence. In die absence uý more significant sensitive to sinall inisalignmerits or to fit 'ij a -,ay
intensity fluctuations, however, even very smnall in- to correct the rinisalignment~s prior to the matcher
tensity variations such as are on at shect of white to reduce the number of passes required over I'
bond paper give rise to zcro-crossings. 'Ilic zero- im5age.
crossings generated by lower contrast features are
more susceptible to noise such as thie variations The matcher's Sensitivity to Small Vertical
due to 120 cycle illumination flicker. This 2ar- misalignmenits has two roots: (1I) matching is
ticular noise source should not be a problem for carried out pixel by pixel on roughly vert;
our matching scheme because the left and right !ero-crossing segments that are often Ic~s ti
cameras will be synchroniized and so will see the pixels high in thle image: and (2) tl-.e scirch
same zero-crossing distortions. '[hey may even dow is along single line. As a consequence.
contribute to the texture oil otherwise uniform sur- if there iK a vertiz:ul misalignment of ai lines be-
faces. tw~en the left and right images, n p,,ints onl one

end of each vcrtical zero-crossing seogient in the
MlATlCHING left imagr. cantiot match with thi: correct segment

in the right iWage. '[his reducens thle portion
[he atcing odue pesenly eingdesgn-Of zero-crossings finding matches which reduicesThe atcing odue pescrflybeig deign the lkelihood that the statistics chocking will pass

cd will base three components, t 1) a zero-crossing ayo'ts nt:e.Wosi ae hr h
coder which detects zero-crossings, in thle convoul- any of glm.~n is mall Wreng tn callowhr mothcan
tion raster signal and codes the orientation, and ddt ace hc~h tbcmspsil o

possblythegraien orcuratue o th :~ro-zero-crossing points atl the cods of vertical seg-
crossing contour at that location,, (2) a matcher ments which do not "see" the coreect segnient in
that lakes the coded zero-crossing rasters from thn other image to ;iiatch to the next segment overthe flef and right camieras and computes the dis- and not be rejected by the statistics module. 'Ibis
parities ofUnique matches when they occur as well later case piroduces sporatic mismatches with large
as inifonnation about the abseceC Of an) matches disparity errors. One mnethod-used by Grimson-
at locations where they were expected:, and (3)foreuigtspobmisodoie ach
some t'orm of statistics checker for fltering good for rwiedu ncin thise problmiod the lfimatech-
matches from random incorrect marchies whichigtwconedvnfrm heltiaead

once from the right awl then taking onily those
Occur when the matcher's search window is im- rslsfudgigbt as hs ~ w

proprlypostioed.think, becc~ise dwaccidental matches tend to oc-
The stereo matching algorithmi developed bi cur dilrerentl) in thle two cas:es and so can be

Grimson from Mar. and N\g~io's Vheoyry operates eliminated.
on rouigily vzrt'cal zeco-crossings in difference of
Gaussian filtered images. !;or o~ach such. zero- Vertical nmisalignmenst- between the two camn-

crosingnoit i thelef imgea w~dowin he rasi of a stereo system cannot he avoided. '[his is
other image one linc. high and iv in length (where becaiuse the distances, from a point in the field of
w is the diamieter of the positive part of the I= view to the left and right cameras can be differt. it

fle)is searciied. If there is only --ne zerocssn giving rise to slightly different scakcs at that loca-
filther widwta acit iezr-rsigfoion in the images. 'Ibhis efl'cct is most proaiounced

the left image, it is taken as a 'candidate match xs the image's left and right edges and for larger4
to 'A- further va~idatcd by a subsecluert statistical vergence angles. TIable 1 show somei worse case
zheck. Grimsonm has made effective use of this estimates for the magnitude of this type of vertical

schee i, frtheingourundrstadin o~themisalignment for typical vergence angecs and a
sthie reo ma rtching pobur anesandin g de ofstraing 1000 line image with a 20 degree field of view. lT
that the Marr and Pogglo theory is consistcat with eape ihavremc f5dgest agth

feet away when the cameras arc. 11 foot apart-the
the kno'~n psychophysical data on stereo vision,.xetdvtcl~ineto h aea ~odI

'¶straightfor'vard hardware design was worked bexpce wthinpls irfignusmelnet or btte a-r.sYol

out 'for a matchcr follo,,ving thte general idea ofr wthin re sever wayus' line whrc bo'emt, ofst

0 rimsson's aigorithm. 1Powc,.cr in tests of a ot. between the 1e0t and right innagcA com'tc be mi-asur-
ware simuiation of the design, we found that it e cly eaeeaii~ i osblt
was very sensitive to small vertical misalignments edlcly ow r xmnigdeosilW

betwen te tw imaes ad deided~o sudyof a device for corrcting misalig~nmnrrts at the
the problem further. Grimson had observed this a~r-rosn deviehsto etionster o the ooysteif Stapid
pruilcni also awd solv'ed it byi running 6w~ miatchr- advc a ob fe h oiovrtai
ing algorithm several times with diff7eimet ,ri- changes in aligirmnwn ar"t to be lsandkd and it
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should be Meore the stereo-matchcr. Our prellimi- 4, hrmi Ya and Fu~kushimd, K. An inf.'rence uponl
nary design wouild allow %imc gencr-Ality in the the ncural network flnd~oo bi)nocular corrcpott-
type or zerrJcrossing in foffmatij~n obtained is well dence. Tivim .'I/E.J59-1J, 133-140. (1976).
is providing offiket adjustmecnt over ana 8 to 16 line iue.I.Twrdthauo tonobncla
range. 5 uewB'oad catilto rhncia

depth perceptiont (AUTOMAP-1). In Ptoeeedings

IJSCSSONof the IF7/1S Coongress, ed C.M. INoppuwcll. Am-
stwiana:Noith Ilolland.i(163)

We are beginninig to :xpirianent wi,,h the 6. Julesz, B. Foundations of cyclopeans perception

first part of otir hardware iystem -thc cioncrn-

ing as much as wc can about wheat this real time tiorn. Pwvc. R. Sac. !.'ond 1)2 V, 187-217, (1980).
dimension can add C0 oir aanderstanding or the 8. Marr, 1). and Poggio, T. C~mipicrativc coml-
stereo inaitching problem, We are particularly in- putation of sterco disparity. Science 194,. 2U3?Z.
terested in tie dcgrcc to which thc matcher and (1976).
statistics modules can be streaanliacd by takcing ad-9.Mr,).ndogi,1 oaodcsadn
vantage of the repetitive naitire of tile real time elptto o ~ ~ crI:nuty .
systcem in conjunction with the imiape variations cmutatsionce to~ undc.-lniglua BuM IS470-4 .(197)

that can expected between frarnes duc to mo- ua~cecsRxPo.Bt.1 7-8,17)

tion or illumination elffects. 10. Marr, 1). and Pgi.T opttoa

1. Dev,1. Niudd, G.R.. Fe'ise., S.D). and Niassnicier,
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Figure 2. 'Ilie serpentine nimeory and digital convolvcr comnbination on the I isp machine Xbus. The

7Xbus is a 32 hi, t Ns. Fach Iliodutlkv has its own daut address-lhva•y arrows-and control addres-
thin arrows-on this bhus. In mnwiory to memory operation, a niiCro- t•ic routine reads 4 bytes or

imiage daut from an array in memory, writes it to the serpentine incmory's data, address, and then

reads 4 16 hit bytes firomn the conoher's data address and writes them to in output array jn .Lisp
imachine memory. 'Ihis Aquence is relpatcti until the entire input array has hben scanned. 'Iis klop
runs at about 1.5 jsec per pixel when no paging is required.

Tame I
Vertlcal Mi-aligmuid Maitaitltdes Isn a 1000 lAve Imlge Due to Dilffrent Di-taaaa irM
"1 aret to ('ameras at 10 l)eltee Axlmutkh

* Dld ]D, (lines)

0 1 ±0
1 56 L.001I
2 29 1.0062 3
3 19 1.0093 4
4 14 1.012 6
5 11 1.015 7
6 9.3 1.019 9
7 8.0 1.022 11
8 7.0 1.025 12
9 6.2 1.028 14
10 5.5 1.031 iS

"0 is %ergence Angle in dcelres,
I) Lm nwan disiance front amineras to ar[,et 1m 10 degrecs atimuth.
d is camera - sparation.
I)h and 0,) arc distanc•s to target from left .nd right camera.
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I :igtlire 3. 'I'lc line array camera prototype. All ,ircuitry for the camera other than the power supply

is cr-itained within the camera botly--show here uncovered. i)igi tal output is ovelt aS toot I iblon

cable.
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An Iterative Image Registration Technique
with an Application to Storeo Vision

Bruce D. Lu•sa
Taieo Kanade

Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract 2. The registration problem

Image registration finds a variety of applicationa in computer

vision. Unfortunately. traditional image registration techniques The translational image registration problem can be

tend to be costly. We present a new irago registration itichnique characterized a follows: We are given functions F(x) and 0(x)
that makes use of ,he spatial intensity giaoisyt of the images to which give the respective pixel values at each location x in two
find a good match uxl'g a type of Newton.Raphson iteration. Our images, where x is a vector. We wish to find the disparity vector h
technique is aste* '•r9use it examines far fewer potential which minimizes sorae measure of the difference between F(A + h)
matchas betwake the images than existing techniques. and G(x), for x in some region of interest R. (Sea -e 1,.
Furthermore, this registration technique can be generalized to
handle rotation, scaling and shearing. We show how our
technique can be adapted for use In a stereo vision system. F (x)

1. Introduction

image registration finds a varietý of applications in computer
vision, such as image matching for stereo vision, pattern
recognition, and motion analysis. Unfortun.Ately, existing h
techniques for image registration tend to be catly. MIreover,
they generally fail to deal with rotation or other distortions of the Figure 1: The image registration problem

i Images.

Typical measures of the difference between F(x + h) arK G(X)
In this paper we present a new image registration technique that are:

uses spatial intensity gradient information to direct the search for

the position that yields the best match. By taking more * L, norm a - x; .JF(x + h) - G(x)A
information about the images into account, this technique is able
to find the best match between two images with far ki-ar * L. norm . (XMq IF(x + h) -G(x)i2)1/2

comparisons of images than techniques which examine the
possible positions of registration In some fixed order. Our negative of normalized correlation
technio-je takes advantage of the fact that in many applications - " F(X + h)3(x)
the tvWo images are already in approximate registration. This
techrliqim can be genoralized to deal with arbitrary linear -, F -- . ' ( -n),l

distortions of the image, including rotation. We then describe a We will propose a reore general measure of image difference, of
aereo vision system that uses this registration technique, and which both the L2 norm and the correlation are secial cae The

suggest some further avenues for research toward making Li norm is chiefly of Interest an an Inexpenive approximation to
effective use of this method in stereo Image understanding. the L2 norm.

S~12.1
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best match, wnd SSDA specifies only the method used to calculitte
3. Existing techniques (an estirr-ate of) the difference function. Thus for example, one

could use Ite SSDA technique with either hill climbing or
An obvious technique for registering two images is to calculate exh•:stive search. in addition a coorse-t'ne strategy may be

a measure of the diffeience between the images at all possible adopted.

values of the disparity vector h-that is, to exhaustively search the

space of possible values of h. This technique is very time The algorithm we present specifies the order in which to search
consuming; if the size of the picture G(x) is NxN, and the region of the space of possible h's. In particular, our technique starts withtI possible values of h is of size MXM, then this method requires an initial ,Jtimate of h, and it uses the spatial intensity gradient at
O(M2N2) tirne to compute. each point of the Image to modify the current estimate of h to

obtain an h which yields a better match. This process is repeated

Speeiup at the risk of possible failure to find the best h can be in a kind of Newton-Raphson iteration. If the iteration converges,

uchieved Ly using a hill-climbing technique. This technique iK will do so in O(MA2 log N) steps on the average. This registration

begins with an initial estimate h0 of the disparity. To obtain the technique can be combined with a coarse-fine strategy, since it

next quess from the current guess hA, one evaluates the requires an initial estimate of the approximate disparity h.

difference function at all points in a small (say, 3x3) neighborhood

of h. and takes as the next guess hA + 1 that point which minimizes

the difference function. As with all hill-climbing techniques, this 4. The registration algorithm
method suffers from the problem of false peaks: the local optimum

that one attains may not be the global optimum. This technique in this sactio.• we first derive an intuitive solutiun to the one-
operates in O(M2N) time on the average, for M and N au above, dimensional registration problem, and then we derive an

alternative solution which we generalize tc multiple dimensions.

Another technique, known as the sequential similarity detection We then show how our technique generalizes to other kinds of

algorithm (SSIDA) [2], only estimates the error f-br each disparity registration, We aluo discuss implementation and performance of

vector h. In SSDA, the error function must be a cumulative one the algorithm.
such as the L, or L2 norm, One stops accumulating the error for

the current h under investigation when it becomes apparent that 4.1. One dimensional case

the current h is not likely to give the best match. Criteria for In the one-dimensional registration problem, we wish to find the
stopping include a fixed threshold such that when the horizontal disparity h between two curves F(P) and G(x) = F(x + h).

accumulated error exc6eds this threshold one goes on to the next This is illustrated in figure 2.

h, and a variable threshold which increases with the number of

pixele in R whose contribution to the total error have been added. h

SSDA leaves unspecified the order in which the h's are examined.OGx) F ()

Note that iri SSDA if we adopt as our threshold the minimum

error we havw found among the h examined so far, we obtain an

algorithm similar to alpha-beta p'uning in min-max game trees [7). F(x)

Here we ta.e advantage of the fact that in evaluating
minh Yx d(x,h), where d(x,h) is the contribution of pixel x at
disparity h to the total ,wror, the 7,. can only Increase as Yte look ; •

at more x's (more pixels). a b

Figure 2: Two curves to be matched

Some registration algorithms employ a coarse-fine search

strategy. See [6j for an example. One of the techniques Our solution to this problem depends on a linear approximation
discussed above is used to find the best registration for the kto the behavior of F(x) In the neighborhood of x, as do all
images at low resolution, and the low resolution match is then

used to constrain the region of possible matches examined at subsquent solutions In thb paper, in particular, for small h, 4
higher resolution. The coarse-fine strategy is adopted Implicitly by F(x + h) - F(w) (
some image understanding systems which work with a "pyramid" h

of images of the same scene at various resolutions. G(x) - F(x)
h

It should be noted that some of the techniques mentioned so ar so that

can be combined because they concern orthogonal AspecOa of the G(x) - F:(m)
Inmae registration probism. Hill climbing and exhaustive tuarch h ( (2)

conoer only the order in which the -algorithm searches for the
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The succes3 of our algorithm requires h to be small enough that ta find the h which minImizes the LI norni measure of the
this approximation is adequate. In section 4.3 we will show how to difference between the curves

extend the range of h's over which this approximation is adequate

!. by smoothing the images. E ÷F(x h) - G(x)J1.

The approximation to h given in (2) depends on x. A natural To minimize the error with respect to h, we st
method for combining the various estimates of h at various values

of x would be to simply average them: 0

G(Y) - F(x)
. (3) - tF(x) + hF'(l) - G(x)IQ
S F(x) a-

We can improve this aversige by rumlizirng that th i linear " 2F'(x)[F(x) + hF'(x) - G(x)],

approximation in (1) is good w',re Fjx) is near-y lin..ar, and

conversely is worse *here IF"!(x)J is large. Thus we could weight from which

the contribution of elich term to the average in (3) in inverse

proPortion ko an estimate of IFr(x)I. One such estimate Is h P(m)(() -()

G'(x) - FI(x)
F(x) (4) This is essentially the same solution that we derived in (6), but withh

the weighting function w(x) a Ft(x)
2

. As we will see, the form of
Since our estimate is to be used as a weight in an average, we can the linear approximation we have used here generalizes t6 two or
drop the constant factor of 1/h in (4), and use as our weighting
functionl more dimensions. Moreover, we have avoided the problem of

dividing by 0, since in (9) we will divide by 0 only if F'(x)u0

WW everywhere (in which case h really is undefined), whereas in (3)

G)'we will divide by 0 if F'(x) a 0 anywhere.

This in fact vopeals to our intuition; for example, in figure 2, where

the two curves cross, the estimate of h provided by (2) is 0, which The iterative form with weighting corresponding to (7) is

is bad; fortunately, the weight given to this estimate in the average
f is small, since the difference between F'(x) and G'(x) at this point h- 0

is large. The average with weighting is 1 , x w(x)F'(x + hk)[G(x) - F(y + h())

-1 , x +xw(x)F,(m+h ) , (10)
h w(x)G(x) - (x) w() (6) where w(x) is given by (5).

L F'(x)

where w(x) is given by (5). 4.3. Performance
'•'• A natural question to ask is under what conditions and how fast
Having obtained this estimate, we can then move F(x) by our the quene o as Is oither ha consid he cast

the sequence of h,'s converC As to the real h. Consider the cas6
eatimate of h, and repent this procedure, yielding a type of
Newtoi.Raphson iteration. Ideally. our sequence of estimates of h FWx sin x,
will converge to the best h. This iteration is expressed by

G(x) - F(x+h) - sin (x+h).h0 0,

Sw(x)[G(x) - F(x + hA)) 0,. It can be shown that both versions of the registration algorithm
hA +1 hA +• X., ---- F/(x+h w(x)+ (7) given above will converge to the correct h for Ihi < w, that is, for

initial misregistrations as large as one-half wavelength. This

4.2. An alternative derivation suggests that we can improve the range of convergence of the

The derivation given above does not generalize well to two algorithm by suppressing hiah spatial frequencies in the imag•,

dimensions because the two-dimensional linear approximation which can be accomplished by smoothing the image, i.e. by

occurs In a different form. Moreover, (2) is undefined where repincing each pixel of the image by a weighted average of

F -(x) - 0, I.e. where the curve i. level. Both of these problems can nelghbot.'rig pixels, The tradeoff is that smoothing suppresses

be corrected by using the linear approximation of equation (1) in w.inall details, .arid .hus makes the match less accurate. If the

the form smoothing window is much larger than the size of the object that

we are trying to match, the object may be suppressed entirely, and

F(x + h) F(x) + hF'(x), (a) so no match wilt be possible.
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Since lowpnsa-filteretd Insges can be sampled at lower 0 E

resolution with no Icw of Information, the above observation 8h

suggests that we adopt a coarse-fine strategy. We can use a low. -F(x) + h8 FF

resolution smoothed version of the image to obtain an - h -O-x

approximate match. Applying the algorithm to higher resolution O2. 2F F(x) + hF-F - G(x)]F

Images will refine the match obtained at lower resolution. 0x ax

12 ,rome which
While the effect of smoothing is to extend the range of

convergence, the weighting function serves to improve the (OF•' ~accuracy of the approximation, and thus to SPes;• up the h=,- ay., ax " 'ax

convergence. Without weighting, i.e. with w(x) 1 t, the calculatedofwppoxmaio, ndthu t smO u tech~ the sam for (steone)imn(on)a. version in •
disparity h of the first iteration of (10) with F(x) sin x falls off ko

zero as the disparity approaches one-half wavelength. Howe6,er,

with w(x) as In (5), the calculation of disparity is much more

accurate, and only falls off to zero at a dispdrity v"ry near one-half The discussions above of iteration, weighting, smoothing, and

wavelength. Thus with w(x) as in (5) convergence hi faster for
case apply to the n-dimensional case as well. Calculating our

1rqe disparities, estimate of li In the two-dimensional case requires accumulating

the weighted ,.um of five products ((G - F)F,, (G - F)F1 , F?, F2, and

4.4. Implemontatlon FXF,) over the %*egion R, as opposed to accumulating one product

Implementing (10) requires calculating the weighted sums of the for correlation or the L2 norm. However, this is more than

quantities F'G, F'F, and (FJ)2 over the region of interest R. We compensated for, especially in high-resolution images, by

cannot calculate F'(x) exactly, but for the purposes of this evaluating these sums at fewer values of h.

algorithm, we can estimate it by

F'' F(x + Ax) - F(x) 4,6. Further generalizations

Ax Our technique can be extended to registration between two

and similarly for G'(x), where we choose Ax appropriately small images related not by a simple translation, but by an arbitrary

(e.g. one pixel). Some more sophisticated technique could be linear transformation, such A rotation, scaling, and shearing.
k used for estimating the first derivatives, but in general such Such a relationship Is expressed by

techniques are equivalent to first smoothinC the f-jnction, which

we have propvsed doing for otnf.r reasons, and then taking *he G(x) F(xA +h

difference. where A is a matrix expressing the linear spatial transformation

between F(x) and G(x). The quantity to be minimized in this ese

4.5. Generalization to multiple dimensions is

The one.dimensional registration algorithm given above can be

generalized to two or more dimensions. We wish to minimize the E = 1, [F(xA + h) - G(x))2.

L2 norm measure of error: N,
To determine the amount &A to adjust A and the amount Ah to

E - -, [F(x + h) -G(x)1
2 , adji~st h, we u,.e the linear approxim3tion

where x and h are n-dimensional row vectors. We make a linear F(x(A + AA) + (h+ &h))

approximation analogous to that in (8),
XF(xA + h) + (xAA + Ah)-F(x), (11)

F(x + Ih) = F(X)x h---F(x),
ax When we use this a)proximation the error expression again

where a/ax is the gradient operator with respect to x, as s column becomes qucdratic in the quantities to be minimized with respect

vector: to. Differentiating with respect to these quantities and setting the

results equal to zero yields a set of linear equations to be solved

a- f • ... asimultaneously.
ax ax1 a)= x,.

This generalization is useful in applications such as stereo

SUsing this appro:.Imation, to mininmize E, we set vision, where the two different views of the object will be different
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v#% due to the difference of the viewpoints of the canw. as or to Gennery (4) has shown •:ow to aimultneously solve for t
differences In the procee"itg of the two Images. If we model this camera paraemetvs and the distances of objects.
diffreonce AM a linear translormation, we hava (Ignoring the
registration problem for the moment)

I! 5.2. A mathematical characterization

[X) . 00(x)+A, The notation we use Is Illustrated in figure 3. Let c be the vector

of camera parameters that describe the orientation and position of

where a may be thought of as a contrast adjustment and P as a camera 2 with respect to camera l's coordinate system, These

brightness adjustment. Combining thi with the general linear parameters are azimuth, elevation, pan, tilt, and roll, as defined in
transformation registration problem, we obtain (4]. Let x denote the position of an image in the camera 1 film

plane of an object. Suppose the object is at a distance z from

E a Y [F(xA ÷ h)- (aG(x)+ ,3)J; camera 1. Given the position in picture 1 x and distance r of the
object, we could directly calculate the position p(x,z) that it must

as the quantity to minimize with respect to a, fi, A, and h. The have occupied in three-space. We express p with respect to

minimization of this quantity, using the linear approximation in camera l's coordinate system so that p does not depend on the
equation (11), is straightforward. This Is the general form orientation of camera 1. The object would appear on camera 2's
promised in section 2. If we Ignore A, minimizing this quantity Is film plane at a position q(p,c) thut is dependent on the object's

equivalent to maximizing the correlation coefficient (see, for position in three-space p and on the camera parameters c. Let,
example, [31); if we ignore & and P as well, minimizing th!s form Is G(x) be the intensity value of pixel x In picture 1, and let F(q) the
equivalent to minimizing tho L2 norm. Intenkity value of pixel q in picture 2. The goal of a stereo vision

system is to invert the relationship described above and solve for c
and z, given x, F and G,

5. Application to stereo vision

In this section we show how the ,.neralized registration i(
algorithm described above can be applied to extructing depth [I
information from stereo images.

&1. The stereo problemOp

The problem of extracting depth intormation from a stereo prir

has in principle four components: fielding objects In the picture3, 0
matching the objects in the two views, determining the camera

parameters, and determining the distances from the camerg to the Picture I Picture 2
objects. Our approach Is to combine object matching with solving Figure 3: Stereo vision

for the camera parameters and the distances of the objects by
using a form of the fast registration technique described above.

5.3. Applying the registration algorithm
Techniques for locating objects include an interest operator [6), First consider the case where we know the exact camera

ze, o crossings in bandpass-filtered imapes [5], and linear features ;,arameters c, and we wish to discover the distance z of an oojeot.
[1]. One might also use regions found by an image segmentation S3uppose we have an estimate of the distance z. We wish to see
program as objects. what hlappens to the quality of our match between F and G as we

vary z by an amount Az. The linear approximation that we use
Stereo vision systems which work with features at the pixel level here Is

can use one of the registration techniques discussed above.
Systems whose objects are higher-level features must use some F(z + Az) F(z) + &z,
difference measure and some search techn~que suited to the

• :articular feature being used. Our registration algorithm provides where
a stereo vision system with a fast method of doing pixel-level aF ap aq BF
m\t,,,hing. -- ' * F , (12)

Many stereo vision systems concern themselves only with This equation is due to the chain rule of the gradient operator;
calcutating the distances to the matched objects. One must also aq/ap is a matrix of partial derivatives of the components of q
be aware that in any real application of stereo vision the relative with ret'pect to the components of p, and aF/aq is the spatial

positions of the cameras will not be known with perfect accuracy. intensity gradient of the image F(q), To update our ostimate of z,
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we want to find the Az which satisfise Figures 5 and 0 soe bandpus0filtered vw#ona of the pictures It
figure 4. Bandpasa-flftoed inages ae preferred to lowp•ss.

I 0 -filtered image in finding matches because very low spailal

[F + F frequencies tend to be a reslt of shading dlfferenca and caMry no
84Z F Z (or misleading) depth information. The two regions enclosed In

rectangles in tht lieft view of fIgure 5 have been hand-selected aid
Solving for Aa, we obtain migned an initial depth of 7.0 In inits of the distance between

SIF 8F2 camerae. If these were the actual dcepit, the corresponding
&A = .1-40 -F1I 1 (),• cbjects would e. found In the right w at the poitiorm indicatedfigure 5. After seven cepth-adju|tmnt iterations, the program

where 8F/az is giver, by (12). found the matches shown in rigure 6. The distances are .06 for
object 1 and 5.86 for object 2.

On the otrer hand, suppose we know the distances zr,
i a 1,2,._n, of each of n objects from camera 1, but we ..on't know Figurms 7 and 8 i•re bandpase-filtered with a band one octave
the exact camera parameters c. We wish to determine the effect higher than figures 5 and 6. Five new points have been hand-
of changing our estimate, of the camera parameters by an amount selected in the left view, reflecting the di'fierent features which
ac. Using the linear approximation hrive become visible in this spatial frequency range, Each hM

8q aF been assigned an initial depth equal to that found for the
F(c 4 Ac) = F(c) +4 A -,q corro.ponding larger region in figure 6. The predicted position

correspo:•,•g to these depths is shown in the right view of figure
we solve the minimization of the error function with resect to Aa 7. After five depth-adjustment iterations, the matchs ahown in
by setting figure 8 were found. The correspondino "iepthe are 5.96 for object

1, 5.98 for object 2,5.77 for object 3, 5.78 for object 4, and 6.09 for
0 - Yx e-- IF(c + AC) - G12  object 6.

Me I
(F-X,~ +n AcL-~ _- G12,

8ac ac aq Figures 9 and 10 are bandpass-filtered with a band yet another
obtaining octave highier than figures 7 and 8. Again five new points have

aqaF T aq V T aq BF been hand-selected in the left view, reflecting the different
Ac', (- LG (2- [ JF)(jq features whinh have become visible in this spatial frequencyAC •'= ,q) c F][x•¢q •• range. Each hss been &,•igned an Initial depth equal to that

As with the other techniques derived in this paper, waighting and found for the corresponding region in figure a. The predicted
iteration improve the solutions for &z and Ac derived above. position c. responding to these depths Is shown in the right view

of figure 9. After four depth-adjustment iterations, the matches

4 Ashown in figure 10 were found. The corresponding depths we
We4. ha implementedthein 5.97 for object 1, 5,98 for object 2, 5.80 for object 3, 5.77 for objectWehave imlmne h ehiu ecie bv na 4, and 5.98 for ot.lect 5.

system which functions well under human supervision. Our 4,ad59fo let.

program is capable of solving for the distasoces to the objects, the
five camera parameters described above, and a brightness and 5.5. ruture research
contrast parameter for the entire scene, or aný subset of these The system that we have implemented at present requires

considerable hand-guidance. The following are the issues weparameters. As one would expect from the discussion in sectiorn intend to investigate toward the goal of automating the process.
4.3, the algorithm will c-inverge to the correct distances and
camera parameters when the initial estimates of the z,'s and c are * Providing initial dep*h estimates for objects: one should be able
suf iciently accurate that we know the position in the camera 2 film to u;;e approximate depths obtained from low-resolution Image.
plane of each object to within a dcstance on the order of the size of to provide initial depth estimates for nearby objects visible only
the object. at higher resolutions. This suggests a coarse.fine paradigm not

just for the problem of finding individual matches but for theproblem of extracting depth information as a whole,
A session with this pi ogram Is illustrated in figures 4 through 10.

The original stereo pair is presented in figure 4. (Readers who can * Constructing a depth map: one could construct a depth map
view stereo pairs cross-eyed will want to hold the pictures upside from depth measurements by some interpolation method, and
down so that each eye receives the correct view). The camera refine the depth map with depth measurements obtained from
parameters were dotermined independently by hand-selecting successvelyhigher-resoluton views.
matching points and solving for the parameters using the program * Selecting points of Interest: the various techniques mentioned
described in (4]. in section 3 should be explored.
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BOOTSTRAP STEREO ELOR S•IATI(YS

Ursha Jo Hannah
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•' Department 52-53, Building 2,01
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Pa].o Alto, CA 94304

ABSTRACT

Over the past three yiirs, Lockheed has been it Tie his peis the second comra posi-
working in navigation of an autonor.u3 *er-al tfan and orientaon to be determined.
vehicle using passively sensed imagec. One tich-

nique which has shown promise Is bootstrap stereo,
Sin which the vehicle's pnltion is determined from Because the aircraft will sooa be o-t o!

the perceived locations of known gtrund control sight of the knon landmarks, aew landmark points
points. Successive pairs of known vehicle camera must be estab%.ished whenever possibe. For this
positions are then used ft locaie correspunding purpose, "intere3ting points"--poinLs whose
i, image points an th. grouznd, creat:.ng new control 3urrcunding informatLon inr±icates a high likeli-

points. This paper describes a series of error hood of their being matchable [L\J--are nelocted in
simulations which have been performed to investi- the first Image and matched in the zecond image.
gate the error propagation as tW,. Pi.her of boot- Successfully matched points have their reil-world
strapping ite~atiovs increases. libations calcuLated frow the camera position and

orientation data, than join the Landmarks list.

r. In Figre 1, landmarks c and d are located in
¶ this mangar at Time 1; these new points are laterSMOLITOI•OON used to position the. sirc;.:aft at. Time 2. Similarly,

Aoat Time 2, new 'andmarks e and C join the
A previous paper [1] postulated an autonomous list; old landmarks a end b, which av•u no

navigation system, called the Navigat.on Expert, longer in the field-of-view, are dropped ftam the
which tttempts to appro~ima:e the sophistication of landmarks list.
an early barnstorming pilot. This expert would

navigate partly by its simple instruments (alti-
mcter, aitrpeed indicator, and attitude gyros) but
Mostly by what ic c€uld see of cri terrain helow it. _ ____ _I

A major component of the Nevigation Expert is a € 2F technique which we caT.led bootstrap stereo,

Given a oei ol ground coatrol points with
known real-world posi.tions* and given' th~e locations
of the projecttc.ns of theae poLilz onto the image N I N

rlane, it is porsibLe to determine che position and
orientation of the c~amere which collected the image. V/\/~'.I
Conversely, given the pobitions and orientations of
two cameras and the loca.:ions of corresponding b
point-pairs in the two i"go planes, t•il teal-oorld U..AIN KrkJLE

locatios of. tht viewed groumd points can be KNOM, FEAYMS

determined r23. Combiniag thete Lto .:echniques D LCAMIN

iteratively produces thei basis tor bootstrap stereo. - EM~mOAm~ fLKO, wI

Fignre 1 shows en Autonomouc Aerial Vehicle
which ha" obtainvd images at i•'ree points in its E MY INE. trajectory. The 4ootstrap ster.-n process begixs M':" D ID 11X' PO l•soN OF_

with - see of landmark points, s91p1J!ie4 here 'o [IL , . _ -

the two poin.s a and v, whosi veaL-%tovld t oor- rL ' b C - d

dintate. ate known. from ther'g, tio camera positlon L__L,_. _ E L..
and orientation is determined for the ýminte frome
taken Pt Tim 0. Standard image-matching correln-
ticn techniques (33 are then used to locate these
Sswe poLtat In the second, overlapping frame taken Figure I flavigat"tn Using Bootstrap 9tereo.
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Bootstrap stereo, then, consists af four We therefore re-examined what it was that we
cospunerts-.camera calibration, new landmark really needed to simulate. The major sources of
point selection, point matching, ane. control point error in bootstrapping come from errors in point
positioning. All of these components are well matching between images and the manner in which
establi.shed in the photogramnetry and image pro- these errors perturb the numerical analysis and
ceasing literature; each is conceded to work projective geometry of the camera model calcula-

V reasonably well. What was not known was how the tions and the ground point positioning. If we
errors would aecumulate and propagate in an could reasonably simulate the matched image points,
iterative application such ar bootstrap stereo, complete with errors, we would not need simulated

* This paper describe,3 a serir.s of error simulations grey-level imiagery.
which have been ierformed .o investigate the error
buildup as the number of bootstrapping iterations Given this simplification, we proceeded with
increases, our simulation. We first created a digital

terrain model by constructing a planar grid below
ERROR SIMULATIONS the general swath of the flight path, then used a

random number generator to create elevations at
Ideally, the error aý,alysis of a new tech- each point of the grid. We devised a flight path

nique would be performed on several representative by flying our hypotehtical aircraft along a given
sequences of real, data with known ground truth, vector, taking its position at intervals, and
For bootstrap stereo, this would require a introducing random perturbations in the postion
sequence of 50 to 100 images, with each consecu- and orientation of the aircraft (hence of the
tive paitr having an overlap of approximately 75%. camera) at each step along the way.
In addition, a set of known ground control points
visible (and recognizable) in the first image of For each camera position, we performed the
the sequeec( is needed to initialize the techdique. necessary projective geometry to determine where
It is desirable to have the position and orienta- each of the terrain grid points fell in the image;
tion of the camera known for each image; this those which fell outside of the field-of-view of
simplifies determining the buildup of camera po- the camera were discarded. Each imaee ooint was
sition error. A'ternatively, having sets of known, perturbed by a random amount and/or rounded (e.g.
visible, recognizable ground control points in every to the nearest pixel or 1/10 pixel) to simulate a
third or fourth image would permit calculation of match error. Image points were tagged with the ID
ground point position errors, which should be equi- numbers of the grid points which generated them,
valent to camera position errors. Finally, it is so that points in two images could be matched
imperative that the spatial distortion which the symbolically. (Figure 2 suumnarizes the parameters
camera induces in the image be known, either ana- which define a simulation).
lytically or empirically, so that the image pixel
positions can be corrected for this distortion. We then proceeded to run the bootstrapping

programs un this data set. The programs for locat-

In the course of developing bootstrap stereo, ing interesting points and matching them from image
it became obious that we did not have a data set to image were replaced with a single program to
which met these requirements, nor could we obtain retrieve interesting (i.e. visible) points from the
one within our available time and financial image point files and match them from file to file
resources. Despite this, we needed to document by their ID numbers. The camera position calkula-
the buildup of error in the camera and ground-point nion program and the ground-point positioning
positions as the bootstrapping progressed. The program were used without changes.
only solution was to program a means for similat-
ing a flight, thus creating data on which the RESULTS
pieces of code could operate as they would for
actual boutstrapping. About 25 ,iifferent experiments were done

using the simplified simulation described above.
The ideal manner in which to do this would be These investigated the effects of various mission

to simulate grey-level imagery of a realistic parameters (such as camera field-of-view, pointing
3-dimensional surface, as seen from arbitrary view- angle with respect to the direction - flight, etc.)
points. This could be accomplished by creating a as well as the effects of match accuracy on the
digital model. of a region of terrain--complete resulting errors in the camera position estimates.
with features such as vegetation, roads, and
houses, as well as the reflectance properties of The general conclusions from these simula-
each part of the model. We could then draw up a tions are that the distance traveled before path
flight path over the simulated terrain and calcu- estimation error becomes unacceptable can be
late the set of images that the silmulated camera increased by:
would take of its sinilated world as ft moved along
this path. These images could then be fed directly 1) Increasing the camera field-of-view (Fig. 3)
into the interesting*.polnt program, etc., and we 2) Increasing the platform stability (Fig. 4)
could easily compare the resuliog bootstrapped
positions to the simulated flight path. This 3) Increasing the match accuracy (Fig. 5)
approach, however, was deemed to be impractical to 4) Using backward-looking Imagery (lug. 6)
implement within our available computational and
manpower resources.
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The first three of these are fairly obvious. It should be mentioned that most of our simu-
Increasing the field-of-view increases the distance lations did NOT include any use of the instruuen-
which can be traveled between camera shutterings tation on our simulated aircraft. Of course, any
while still maintaining 75% overlap in the data. reasonable system which is flown will have atti-
Increasing the platform stability makes it less tude and altitude instruments whose readings at
likely that wild swings in the pointing angle of the times the camera is shuttered will be avail-
the camera will decrease the ground coverage over- able to the processing system. These readings can
lap, which increases camera positioner inaccuracy, provide good initial values for the solution of the
Increasing the match accuracy decreases the uncer- highly nonlinear camera equations and can prevent
tainty about camera and ground-point positions, bad data points from unduly perturbing the solu-
allowing error to build up more slowly. tion. We have flown one simulation using postu-

lated instrument readings and constraining the
That backward-looking imagery should be super- camera position and orientation solution to lie

i o r to nadir or forward-looking imagery is not near these. This simulktion showed a 5-fold
intuitively obvious. To understand this, consider increase in distance traveled before the position
the two major ways in which errors enter into became inaccurate, when compared with a similar
camera positioning. if the set of ground data run without the instrumentation and constraints.
points and their corresponding image points are
slightly inconsistent, the camera calibrator will CPCICWSIQKS
make an ercor in the camera position and orienta-
tion. Vt the other hand, if a pair of camera posi- When an autonomous aerial vehicle must navi-
tions au. of matching points within the images are gate without using external signals or radiating

slightly inconsistent, then the rays from the energy, a visual navigator is an enticing possi-
camera center through the image points will not bility. We have proposed a Navigation Expert
intersect prv•cisely, giving an error in that capable of emulating the behavior of an early
ground-poinc position. Of these two errors, the barnstorlning pilot in using terrain imagery. one
ground-pofat positioning is more sensitive, since tool such a Navigation Expert could use is boot-
it depends on only two rays, while the camera strap stereo. This is a technique by which the
positiov determination uses information from a vehicle's position is determined from the per-
larger number of ground-point-to-cawera rays; ceivel positions of known landmarks, then two
the redundancy in the multiple observations greatly known camera positions are used to locate real-
helps in reducing the error, world points which serve as new landmarks.

Now consider the geometry involved in the The components of boctstrap stereo are well
forward- and backward-looking cases. When the established I= the photogrammetry and image pro-
camera is looking furward, the new points are being cessing litereture. tie have combined these, with
placed far ahead of the camera by means of a very improvementh, into a workable system [1]. Simni-
oblique tridngle (Figure 7a), where a small error lation results on the error buildup in the system

in match or camers, orientation can cause a large have been encouraging.
error in the ground-point position. When the Of course, these tire still only simulation
camera is looking backward, the new points are r l until we an otin calbratedtcon
being placed almost directly under the camera, by results. Until we canobn on calibrated, con-
means of a nearly equilateral triangle (Figure 7b)-- trolled imagery with knkn ground truth on which
the most favorable geometry for minimizing ground- to run bootstrapping, then compare its results
point position error. Nadir imagery shares this with a simulation having the same parameters, it
favorable geometry, but suffers because of the will be difficult to tell how accurately our simn-

small amowint of visible terrain. Tipping the camera (lations represent the bootstrapping process.

forward or backward brings more terrain into the
field-of-view, permitting longer moves between REFERENCES
images. Thus, ot the three look orientations,
backward-looking stereo provides the best combine- ltion of conditions to maximize the distance moved Image Understanding Workshop, College Park,

befor*. the errors become unacceptable. Mryland, April, 30, 1980.

The obvious tactical question is how far can [2] Thompson, M. H., Manual of Photogrammetry,
the boitstrap tec•mique fly before its errors American Society of Photogrammetry, Falls
become unacceptable. That, of course, will depend Church, Virginia, 1944.
on ,he flight parameters. We ran one simulation in
w~rich all parameters were f'vorably set; after [3] Hannah, M. J., Computer Matching of Areae in
ilying 100,000 ft (almost 20 miles), the position Stereo Imagery, Ph.D. Thesis, AI* 239,
was off by about 25 feet, and the error was still Computer Science Department, Stanford Univer-
accumulating slowly. We do not know how far this sity, California, 1974.
flight could have gone before the errors became
unacceptable, as this is the longest flighL we have [4] Moravec, H. P., "Visual Mapping by a Robot
simulated. Rover", Proceedings of the 6th IJCAI, Tokyo,

Japan, 1979.
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CHARACTERISTICS PRAMEVER

TERRAIN: x, y Grid points, with random * Ground grid specing
elevations above a level plane * hBae plane elevation

0 Amplitude of elevation

FLIGHT PATH: Straight, level course, with 0 Vehicle elevation
random perturbations in 0 Amplitude of position
position perturbations

CAMERA ORI.ATI(ON: FPLrd with respect to the vehicle, 0 Pitch angle of camera with
with random perturbations in respect to flight path
vehicle attitude • Amplitude of attitude

pert•irbatiovs (heading, pitch,
and roll)

SVRMTB C IMAGElf: Image plane projections of terrain • Image plane sixk. (x.y)
points, with random perturbations e Field-of-view angle
in image plane position • Imagery overlap

• Amplitude of imago plane
per turbat ions

PROCESSING: Normal camera modeling and • Number of iterations performed
groumd point positioning, with

symbolic image point matching

Fig. 2 Characteristics and Parameters of th= Bootstrap Stereo Simulations
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Figure 3 Error as a Fai. Ion of Field-of-View. Figure 4 Error as a Function of Course Stability.

Increasing the camera field-of-view increases Increasing the platform stability decreases the
the distance which can be flown before errors error buildup, especially for narrow field-of-
becomv., unacceptable. (In this and subsequent view cameras.
simulations presented here, elevation - 1200
ft. distance flown was varied to maintain 75%
overlap). A
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Figure 5 Error as a Function of Match Accuracy. Figuro 6 Error as a Fwtction of Look Angle.

Increasizig the mtch accuracy decreases the Using backvard-looking inagery greatly
error buildup. increases the distance that can be flown

before errors become unacceptable.
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a) FORWARD-LOOKING CA3E Figure '7 Effect of Forward- and backw~ard-
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errors.
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MODEL-BASED THREE DIMENSIONAL INTERPRETATIONS !
OF TWO DIMENSIONAL IMAGES

Rodnoy A. Brooks

Artificial Intelligence Laboratory
Stanford University, Stanford, Ca, 94305 USA

i .•bsrsct.aspects of the representation complement each other

ACRONYM is a comprehensive domain independ- drn nepeain
ent model-based system for vision u~nd manipulation In this paper- we deal with the techniques do-

relaed tsks Man ofits ub-oduls d rere- v'eloped for image feature and feature-relation predic-
S~sentations have been described elsewhere. Here the tion) and then giersormne ofirth newape inc baryaino
Sderivation and use of invariants for image feature 18)o h efrac ftenwicraino

i prediction is described. We describe how predictions ACRONYM on some images. The low level processes
of image features and their relations are made and we currently use provide either little or noisy data.

howintrutins regenraed hih tllthe inter- Nevertheless ACRONYM makes strong and accurate
hop isructionaloihs are gertoaed whic tfiaell en deductions about the obejcts npeearing in the images.
ture measurments to derive three dimensional sizes hnd Wexpteenbtrprfrnewenmea-
structural and spatial constraints on the original three- curate low level descriptive processes become available.
dimensional models. Some preliminary examples of
ACRONYM'S interpretations of aerial images are shown.

In the ACRONYM system generic object classes
.1. Introduction, and specific objects are represented by volumetric

modeils based on generalized cones along with a par.
At the ARPA IU workshop of May 1980 we tial order on sets of non-linear algebraic inequalities

• ~reported on a num~ber of conceptual advances proposed relating model parameters. Image features and reia-
[ as additions to the ACRONYM system. These have tions betwtan them which are invariant over variations

' now all been implemented, and further extended in a in the models and camera parameters are identified
nubr fcases. The major perfomance advantages by a geometric reasoning system. Such predictions

•, are that now ACRONYM can discriminate instances of are combined first to give guidance to low level image
various classes of mode sI, and extract three dimensional description processes, then to provide coarse filters on
information from monocular images. image features which are to be matched te local predic-

tions. Predictions also contain instructions on how
To support these devlopments we have added a to use noisy measurements from identified imag• fea- q

class •nd subclass relation representation scheme to trst osrc leri osrit nteoiia

onthrue g ometricmbodling syericostemaintsf. T Is isubase three dimensional models. Local matches are combined ,
on te ue o symoli alebrac cnstaint. I SU- ebject. both to consistently smeeting predicted image

port of this a constraint manipulation systems which feature relations, and to the formation of consistent
includes a partial decision procedure on consistency sets of algebraic constraints derived from the image.
of sets of non-linear inequalities was formulated and The result is a three dimensional interpretation of the
implemented [5]. A geometrie reasoning system which image.
can deal with underconstrained spatial •slations was
developed [6J. A new matcher which could manipulate This section describes some of the invariants thatIthe constiaint systems was built fo: interpretc'tion IT] are identified by the reasoning system, and gives ox-
All of thoce systems were implemented in a mixture of ample. of how the back constraints are set up givin
MACLISP and a new rule system bui~t for the purpose, three dimensional information about the instances o

We have thus moved from a purely geometric temdl hc peri mgs
representation and qualitative geometric reasoning sys-
tem to a system with a combined algebraic and To illuminate the discussion in succeeding sub--
geometric representation and a geoitietric reasoning sections we briefly describe the uses and capabilities
system which can make precise deductions about par- of ACRONYM'S constraint mechanism and the allowed

tiaily specified situations. The, geometric and algebraic structure of constraints themselves.
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ACRONYM'S three-dimensional models are rep- which coriesponds to the image of the swept surface
resented by units and slots (e.g, Bobrow and Winograd of a generalized cone, For straight spines, the projec-
[13). Any slot which admits numeric fillers also ad- tion of the cone spine into the image would closely cor-
"mits quantifiers (predeclared variable names) and ex- respond to the spine of the ribbon. Thus a good ap-
pressions over quantifers using the operators +, -- X, proximation to the observed angle between the spines

/and of two generalized cones is the angle betwetun he spines
of the two ribbons in the image corresponding to theirConstraints can be put on quantifiers.. They swept suzrfaces. We do not have a quan~itatlye theory

take the form of inequalities between expressions as of these correspondences. Ellipses are a good way of
defined above, along with the possibility of including describing the shapes generated by the ends of general-
max and min (on the left and right of <, respectively). ized cones, The perspective projections of ends of cones
Equality can be encoded as two inequalities. For in- with circular cross-sections are exactly ellipses.
stance suppose a cylinder is represented as a general-
ized cone whose straight spine has its length defined Shape prediction involves deciding what shapes
by the quantifier CYL._LEKGTII and whose cross section will be visible, predicting ranges for shape parameters
is a circle with radius CYLuRADIUS. Then the class of (to be used as a coarse filter during interpretation and
all cylinderz ref volume 5 (in some units) can be repre- also to guide the low level descriptive processAs) and
sented by the two cc-istraints: deriving instructions about how to locally invert the

perspective transform and hence use image measure-
S > CYL.-LEUG.TH >( CYL. -RADIUS X CYL, RADIUS X 'r ments to generate constraints on the original three
5 < CYL_.LENGTH X CYLRADIUS X CYL RADIUS X O dimensional models.

The ACRONYM constraint mani-ulation system To predict the shapes generated by a single
(VMS), described in detail in 151, operates on sets of con- generalized cone, we do noý explicitly predict all pos-
straints. A set of constretuts (implicitly conjunctive) sible qualitatively different viewpoits. Rather we
stains. A subset of -inon alrzs simpaicely whernjniste) predict what shapes may appear in the image, and
dednes a subset of n-dimensional space, where n is the associate with them methods to compute constraints
number of quantifiers mentioned in the constraint set. on the model that are implied by their individual ap-
which is the set of points for which all constraints are pearance in an the image. For example identification of
true. This is called the satisfying set, and is empty if the image of the swept surface of a right circular cone
the constraints are inconsistent. The cMS is used for constrains the relative orientation of the cylinder to the
three tasks related to this constraint set. camera (we call these back constraints). Identification

1. Given a set of constraints partially decide wht-44her of an end face of the cylinder provides a different set of
their .atisfying set is empty. The outcomes are constraints. If both the swept surface and an end face
Nempty" or '1 don't know". are identified then both sets of constraints apply. We

also predict specific relations between shapes that will
2.. Find numeric (or ±oo) upper and lower bounds on be true if they are both observed correctly, For more
an expression in quantifers over the satisfying set of complex cones, the payoff is even greater for predict-
a constraint set. This uses prccedures called SUP and ing individual shapes rather than exhaustive analysis
INFV of which shapes can appear together.
3. (A generalization of 2.) For and expression E and
a set of quantifiers V find expressions L and H in V At other times during prediction invariant cases
such that L <: E < H identically over the satisfying of obscuration are noticed. For instance it may be
set of the constraint set. noticed that one cone abuts another so that its end

face will never be visible. The consequences of such
In 2 and 3 the expressions being bounded can realizations are propagated through the predictions.

include trigonometric functions such as sin, cos and
arcsin. The cMS we have implemented in ACRONYM Prediction of shapes proceeds in five phases.
is a non-linear generalization of the linear BUP-INF First, all the contours on a generalized cone which
method described by Bledsoe [';, and Shostak [9). It could give rise to image shapes are indentified by a set
behaves identically to that de,.- ,bed by the latter for of special purpo.se rules. These include occluding con-
purely linear sets of zonstraints and linear expressions, tours and contours due purely to internal cone faces.
In addition it can often produce good bounds (numeric Thus for instance a right square cylinder will generate
and. expressions) on highly non-linear expressions in contours for the end faces, the swept faces, and con-
the presence of many non-linear constraints, tours generated by the swept edges at diagonally ver-

tices of fhe square cross section, The contours are
2.2 Shape prediction., generated independently of camera orientation, and in

We predict shapes as ribbons (the two dimen- terms of object dimensions rather than image quan-
sional analogue of three dimeusional generalized cones) tities.
and ellipses. These are also the features which are The orientation of the generalized cone relative
found by the low level descriptive process we are tern- to the camera (this is done by the geometric reasoning

porarily using in ACRONYM4. system, see [6], [15) is then examined to decide which

Ribbons are a good way of describing the image: contours will be visible and how their image shapes
generated by generalized cones. Consider a ribbon will'be distorted over the range of vmiations in the
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model parameters which appear in the orientation ox- tv lie within a region of the function's domain where it
pressions, is strictly monotonic and hence invertible, then specific

The third phase predicts relations between con-. back constraints on e can be computed at interpreta-
tours of a single generalisqd cone (see section 2.3). tion time (as distinct from during prediction). Weillustrate with an example. A cylinder with lcngth

T'he actual shape& are then predicted. The ex- CYL-LENGTH is sitting upright on a table. A camera
pected values for shape parameters in the image are with unknown but constrained pan and tilt (the latter
estilmnted as closed intervals (see below). Finally the is constrained to lie in the interval s'/12, x/61) is look-
back constraints which will be instantiated during inw- ing across from the sý'de of the table, and it is elevated
terpretation are constructed. above table top height. The geometric details and

~.2.1 hac sk contralnts.. Suppose that we wish numeric constants are not important here. Suffice it toe ~ ~ .. Rack__________________Suppose__that__we__wish

to predict the iength of an image feature which is say that the geometric reasoning system deduces that

generated by something of length I lying in a plane the pan of the camera is irrelevant to the prediction I
parallel to the camera image plane, at distance d from of the length of the ribbon corresponding to the swept
the camera. Furthermore suppose the camera has a fo- surface of the cylinder. It predicts that the length of
cal ratio of f. Then the length of the image feature is the ribbon in the image will in fact be:
given by p -- (I X f)/d. Any or all of l; f and d may be
expressions in quantifiers, rather than numbers. Using -2.42 X CYL LENGTH X cos(-TILT)
the cMs we can obtain bounds on the above expression CYLINDER. CAMZ
for image feature length, giving that it will lie iD some
range P = IPI,•Phi where P, and Ph are either numbers where 2.42 is the focal ratio of the camera and
or ±o0. For more complex geometries the expression CYLINDER.CA•Z is an internal quantifier geneiated by
for p will be more complex, But the method is the drme the prediction module.
(triguumetric functions are usually involved). Both of the above approaches are used to

Now given an image feature, which is generate back constraints to ensure coverage of all the
hypothesized to correspond to the prediction we have relevant quantifiers. They are:
to decide whether it acceptable on the basis of its mk _ -2,096 X CT- LINOTH X (I/CYLINDER, VAiZ)
parameters. The low level descriptive processes are m _ -2,338 X CTLLNQGl X (I/CTLINDKR.¢Az)
noisy and provide an error interval, rather than an --T.LT < - arccos(eup(-0.413 X mi,
exact measurement for image parameters, Suppose X VTLIND3I.CAUZ X (/I/CYLL%1))\
tht interval is M=m, mh] for a feature parameter -TILT & -arcco(Inf(-0,413 X ml
predic•ed with exrression p. Then the parameter is X CTLINDER.CARZ X (1/1.'T;.LEKtru)))
acceptable if P fl M is non-,mpty. This is the coarse
filtering used during initial hypothesis of image feature The first two are non-trigonometric back constraints
to feature prediction matches, and at interportation time a simple susbsitution of the

measured numeric quantities for mj and mi, is done,
But note also that it must be true that the true The latter two require further comuptation at inter-

value of p for the particular instance of the model which pretamon time. After the substitution, expressions
is being imaged must lie in t.,e range M. Thus we can must b. bounded over the satisfying set of all the
add the constraints: known -onstraints, and the function arccos applied to

give numeric upper and lower bounds on the quantifier
M1 • X f)X d TILT.

fh ý_ i )/d The te( hniques described here work for a more

to the instance of the model being hypothesized, where general class ý 'nctions than trigonometric functions
1, f and d are numbers or expressions in quantifiers. fin the curren, plementation of ACRONYM We use

it for functions an, cos and arcsin). The requirement
2.2.2 Trigonometric back constraints. When is that the domain of the function (e.g. the interval

the expression p involves trigonometri Wfunctions the (-x,7]r for sin and cos), can be subdivided into a finite
above method of generating bik constraints will not number of intervals over which the function is strictly
work. It would generate constraints involving trogon- monotonic, and hence locally invertible,
metric functions, which our cms can not handle. 2.3 Feature relation ,redletlon.

One approach to this problem is to bound ex-
pression p above and below by expressions involving Image feature (.vhape) predictions are organised
no quantifiers contained in arguments to trigouometric as the nodes of the prediction graph. The arcs of
functions, and then use these expressions in setting up ihe graph predict image-domain relations between the
the back constraints, This has the unfortunate side features. During interpretation pairs of hypothesized
effect of losing all information implied, by the Image fea- image feature to predicton node matches are coarsely
ture about the ouaptifiers eliminated from the bounds. checked for consistency by attempting to instantiate

"the predl&ýLon arcs. Sonme arcs also include back con-
A second approach is sometimes applicable. If straints which the instantiation of the arc implies about

a trigonometric function has as its argument e, an ex- the model. These are treated in exactly the same man-
pression, and if the cMS determines that e is bounded ner P- Lhose associated with image feature predictions.
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Prediction arcs are generated to relate multiple made. Again the fact the projections of model spine
shape& predicted for a single cone. For instance a correspond to image spines is used here. This arc type
right circular cylinder prediction includes shapes for includes (trigonometric) back constrainl,6 which make
the swept sur.ace and pqrhaps each of the end faces use of the observed angle. Some such constraints con-
(wdependiig on whether the camera geometry is known strain relative spatial orientations of generalized cones.
wellenough to determine a priori exactly which faces Others provide constraints on the orientation of the
will oe visible). It can be predicted that a viable end plane of rotation, which generated the angle, relative
face will be co-incident at at least one point in the to the camera, and hence constraints on an object's
image with a visible swept surface. (In fact a stronger orientation relative to the camera.
prediction can be made: the straight spine of the swept
surface image ribbon can be extended through the cen- 2.3.5 Projection, Suppose one cone B is affixed
ter of mass of the ellipticai image of the end face.) at one en-d-oiti-spine to another A somewhere along

its length. Th., spines need uot be Lo-incident, but the
Prediction arcs are also generated between cones must be. Then the normal projection (we are not

shapes associated with predictions for different general- talking about projection in the imaging sense here) of
ised con, s. These are actually of more importance in the spine-,nd of B onto the spine of A defines a ratio
arriving at a consisteni global interpretation of collec- between di•tance along the spine of A and the spine
tions of image features as complex objects, length of A, If the spines of A and B are both obsern-

The semantics of the arc types we currently use able then the same projection in the imqge is invariant

are as follows, over all possible camera orientations, For example the
ratio of the distance from the rear of the fueslage to

,, AEjl1]jujby. If a generalized cone has a the point of wing attachment, to the length of the
straight spine and during sweeping the cross section is fuselage, is invariant over all viewing angles. Again
kept at a constant angle to the spine the at most one we rely on the coresspondences between the projection
of the cones end faces can be visible in a single image. (other sense here) of a cone spine and the spire of the
Exclusive arcs relate image features which are mutually ribbon generated by the image of its swept surface.
exclusive for this or other reasons. (Note that in the Projection arcs are only generated for pairs of image
case instantiations of the two end faces would probably features which have a co-incident arc. They provide
result in inconsistent back constraints being applied to back constraints on the model via the symbolic expres-
the the spatial orientation of the original model, so sion which describes the modeled spine projection ratio.
that eventually the cms would detect an inconsistency.
However checking for the existence of a simple arc at §A,. _D nce. Sometimes symbolic expressionsi
an early stage is computationally much cheaper tb- for the image distance between two image features can
waiting to invoke the decision procedure.) computed. Distance arcs are only generated for pairs of

;,34CqJ-J nat If two line segments in three- image features which also have an angle arc, but io co-t:, ,3_•__•- •n~e. I tw lie semens i thee- incident arc. Diistaenee arcs generate back constr'aints

space are co-linear then any two-space image of them onc t or iginal model.on the original model.
wil. either be a single degenerate point or two co-linear
line segments, As we pointed out in the previous sec- 2.3.7 RIboqn, ontalns. This is a directed arc
tion a the spine of the image shape correspondsng to the type which relates two predicted ribbons, one of which
swept surface of a coue is usually a good app.oxima- will two dimensionally contain the othic in the image.
tion to the projection of the spine or the cone into the For instance, ribbon-contains arcs are built between
image. thus if two cones are known fo invariantly have the ribbon predicted from the occluding contour of
co-linear spines in three dimensions a co-linear spine a generalized cone with rectangular cross-section, and
arc between the predictions of their swept surfaces can each of the ribbons generated by the two visible swept
be included, faces.

1.3. inC-dhku . If two cones are physically
co-incident at some point(s) in three-space then for any 3. Some Image Interpretations,
camera geometry, if they are both visible their projec-
tions will be co-incident at some point(s) (except for At the time of writing the various sub-systems
some cases of obscuration). Failure to match predicted have only been running together for about two weeks.
co-incident arcs turns out to be the strongest pruning The image interpretations reported here are therefore
process during image interpretation. of a rather preiminary nature.

2.3.4 Angle, If the angle between the spinea In the examples to be described here ACRONYM

of two gineraie-d cones as viewed from the modeled was given a generic model of wide-bodied passenger
camera is invariant over all the rotational variations iet aircraft, along with class specializations to L-10lis
in the model (e.g. wing-wing and wing-fuselage angles and Boeirg-747s. The Boeing-747 class had further
when an aircraft is viewed from above - this is because stxbclass specialihations to Boeing-747B and Boeing-
the only rotational freedom of an aircraft on the ground T4TSP. Thi subclasses are do not completely parti-
is about an asis parallel to the direction of view of an tion their pirent classes. The classes are described by
overhead camera), or if an expression for the observed sets of constraints on some 30 quantifiers. Figure 3.1
angle can be symbolically computed and is suficiently shows instances of the two major modeled classes of
simple, then a prediction of the observed angle can be jet aircraft. Tiese diagrams were draw by ACRONYM
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3.1 are lost also, Besides losing many shapes, the com,-
F~ bination of the edg6 finder and edge linker conspire lmo

give v-ery inaccurate image measurements. We assume
all image measurements have a ±30% error, except
that for very small measurements, we assume that pixel
noise swamps even those error estimates. Then the
error is estimated to be inversely proport.onal to the

Z measurement with a 2 pixel measurement admitting a
"100% error. Thus the data which ACRONYM really gets
,o %",ork with is considerably more fuzsy than indicated

h:.:: t0, the c series of figures.
Fig. L.it Instances of class models of Boeing-747s &ad L- We intend to make use of new and better low
10113. "'vol descriptive processes being devolopped in our

from the models given it to carry out the image inter- iboratory by other researchers as soon as they become
pretations, The constraiMs for the generic class of wide robust enough for every day use (e.g. Baker I whose
bodied jets are given in figure 3.2. Units are meters. descriptions from stereo will also include surface auddepth information).

The camera was modeled as being between 1000
and 12000 meters above the ground. Thus there is Despite this very noisy descriptive data
little a priori knowledge of the scale of the images. A ACRONYM makes good interpretations of the images.

s2The d series of figures show its interpretations with thesp ecific fo cal ratio w as gi yon ' 20 . (S im ailar interp reta-ri b n l a e d by w t p rt o th m d l t ey e e
tions have been carried out with a variable focal ratio, ribbons labeled by what part of the model they were
but then the final conotraints on camera height and matched to. (The numbers which may be unreadable
focal ratio are coupled, and not as clear for illustra- in 3.3d show the groupings into individual aircraft.)
tive purposes --- no accuracy is lost due to the non- ACRONYM first uses the most general set of
linearities that are introduced into the constraints, al- constraints, those associated with the generic class of
though both computation time and garbage collection wide-bodied jets, when carrying out intitial prediction
time are increased.) and interpretation. Literpretation adds additional con-

straints for each hypothesized aircraft instance. For ex-
The aircraft models, the camera model and the ample in finding the correspondences in figure 3.4d con-

number of pixels in each dimension of the image straints were added which eventually constrained the
(512 X 512 in these examples) were the only pieceQ of WINGWID.H (the width of tl-e wings where they attach
world knowledge input to ACRONYM. It has no spe- t- fu]selage) (-o lie in the range [7, 10.5P775311 compared
cial knowledge of aerial scenes: all its rules are about to the modloid bounds of 1T, 12]. The height of the
geometry and algebraic manipulation. These were ap- camera, modeled to lie in the range 11000, 12000] is con-
plied to the particular generic models it was given, to strained by the interpretation to the range 12199,3322).
make predictions and then to carry out interpretations. Once a consistent match or partial match to

a geometric model has been found in the context of
Figures 3.3 through 3.5 show three examples of some set of constraints (model class), it enuq to check

interpretations carried out by ACRONYM. In each case whether it might also be an instan'.• of a subclass.
part a is a half-tone of the original grey level image. We need only add the extra constraints associated
The b ver.don is the result of applying the line finder with' the subclass and check for consistency with those
"of Nevatia and Babu [8]. That line finder was designed already implied by the interpretation using the cMS
to find linear features such as roads and rivers in aerial as described in section 2.1. The aircraft located in
photos. Close examination of results on these images 3.4d is consistent with the constraints for an L-1011,
indiate many errors, and undue enlargement in width but not for a Boeing-747. Author examination of
of nar.-ow linear features. It also produces many noise the images had previously indicated that the aircraft
edges iu in smooth brightness gradients (not visible at was an L-1011. The additional symbolic constraints
the resolution of the reproductions of these figures). implied by accepting that the aircraft is in fact an
These edges are the lowest level input to ACRONYM, L-l011 propagate through the entire constraint set.

Although the constraints decribing an L-1011 do not
An edge. linker (4] is directed by the predictions include constraints on camera height, the back con-

to look for ribbons and ellipses. In this case there is straints deduced during interpretation relate quantifers
very little a priori information about the scale of the representing such quantities as iength of the wings to
images. The c versions of each figure show the rib- the height (and focal ratio in the more general case),
bons fitted to the linked edges when it is searching Thus the height of the camera is further constrainld
for candidate matches for the fuselage and wings of in 3.4d to lie in the range 12356,2489,. Recall that
aircraft. There is even further degredation of image all image measurements were subject to ±30% errors,
information at this stage. This is the only data which and that this estimate has taken all such errors into
the ACRONYM reasoning system is given to interpret, account.
Notice that in the figure 3.5 almost all the shapes cor- Figure 3.3d indicates matches were found for
responding to aircraft are lost. Quite a few aircraft in three airplanes. Examination of the data in 3.3c in-
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dicates that this is the best that could be expected.
Not however that only partial matches were found iu
All three cases. For such small ribbons errors were ap-
parently larger than the generous estimate used. The
fuselage ribbon in the leftmost aircraft (number 1) for
instance fails to pass the coarse filtering stage. Despite
the partial match, this particular aircraft is found to
be consistent with the construints for an L-1O11, but
not consistent with those of a Boeing-747. Again this ENG-CIsP-GAP (6. 161
is correct. ENG-DISP, (8, 41

ENG-GAP 1 7, 191The other two aircraft identified are even more STAB-ATTACH c (3, 1]

interesting, The author had thought from caual In- R-ENG-ATTACHMENT ( 13, 5]
spection of the grey level image that they were in-
stances of Boeing-747s. They both gave matches con- MNG-A HT ( !5. 42]
sistent with the class of wide-bodied jets. As expected WINNATTAC T'TACMET k 2. 481
neither was consisteut with the extra costraints of an UING-TTACHMENT Z 8.4*FUELA -LENGTH
L-101 1. However, although each individual parameter WING-ATTACHMENT s O.6UWUSELAGE-LENGTH
range from the interpretation constraint sets was con- STAB-RATIO c (8.2. 8.651
sistent with th~e individual parameter value or range STAB-SWEEP-BACK t 13, 7)
for the class of l3k eing-T47s, neither set of constraints STAB-LENGTH (7.6, 131
was consistent with that subclass (the constraints con- STAB-THICK (8.7, 1.11
tain much finer information than just the parameter STAB-WIOTH (6, 111
ranges - in the same many as in the example above RUODER-RATIO c (0.3, 0.41
where constraints on wing length propagate to con-
strain the camera height). On close examination of PUDOER-SWEEP-BACK (3. 5)
the grey-level image it was determined that the aircraft RUDDER-LENGTH ( 18.5. 14.2]
were not in fact Boeing-747's. The anthor used the fact RUDDER-X-HEIGHT (7, 13]
that they were much smaller than the L-1O11 to make RUDDER-X-WIDTH (8.7. 1.1]
that deduction, but th•c system made the deduction at WING-RATIO ( 18.35, 0.451
the local level before considering comparisons between WING-THICK c (I.5, 2.S1
aircraft. WING-WIDTH c (7, 12]

Tbe aircraft (probably Boeing-707's, but at the WING4-IOTH s O.S*WING-LENGTH
time of writing we haven't yet got engineering drawings WING-LIFT c (1, 21

needed to build an .accurate model for ACRONYM to WING-SWEEP-BACK:.( (11, 181
check against the images) are in fact too small to be LVING-LENGTH ( (22, 33.S6
"wide-bodied jets of any type. Since the scale ofthe WING-LENGTH a 2,WING-WIiTH
image is unknown a priori this can not be deduced WING-LENGTH k 8.43*FUSELAGE-LENGTH
locally. However it is reflectetd in the height estimates WING-LENGTH s 8.6S*FUSELAGE-LENGIH
derived at the local level - 15400,82261 interpreting the REAR-ENGINE-LENGTH c (6, 18]
L-101 Just as a generic wide-body, (f57a6,6170O as an ENGNE-LENGTH c (4, 71
L-1011), and 19007,11846] for the rightmost aircraft. ENGINE-RADIUS c 11, 7]Thus ACRONYM deduces that either the left aircraft is ENGINE-RADIUS ([, 1.81,4a wide-body and the others are not, or the right two FUSELAGERAOIUS (2.5, 41
Are wide-bodies and the left one is no? (it is too big). FUSELAGE-LENGTH c (48, 781

FUSELAGE-LENG7H z 1.MSG6666,*ING-AITACH4MENT
Finally note that geometrically there were other FUSELAGE-LENGTH a I.S3846154*U.ING-LENGTH

candidates for aircraft in the ribbons of figure 3.3c. FUSELAGE-LEHGTH s 2.S*MING-ATTACIiENT
For instance the wing of the aircraft just to the right FUSELAGE-LENGTH g 2.32S5814*WING-LENGTH
of those indentified and a ribbon found for its pas- FUA - T ( (0,N1)
senger ramp could be the two wings of an aircaft with R-ENG-QUANT s (8, 11
a fuselage missing between them. In fact these two R-ENG-GUANT s 2 + -lw-ENG-cUANT
ribbons were instantiated as an aircaft on the basis of F-ENG-QUANT c 11, 21
the coarse. filters on the nodes and arcs. However the F-ENG-OUAN'r 2 + -1sR-ENG-WJANT
set of back coLst.raiuts they gene:ated were mutually Fig. 8.2
inconsistent.

Thus Yve can see from the examples that eien
with very poor and noisy data the combined use of
geonetry and symbolic algebraic constraints can lead to
accurate image interpretations. The system should be
tested on more accurate low level data to fully evaluate
the power of this approach.
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Abstrict

Optical flow canniot be computed locally, since only one, indcpcnclcnt A recent review 1281 of coinputational techniques for thc analysis of
measurcoient is availablc firom the image sequecnce at a point, while the in'.age sequences contains over 150 recfeiences.
flow velocity has two componcnts. A second constraint is needed, A The optical flow cannot be computed at a point in d',ý image in-
nmeihod fo~r finding the optical flow pattern is presented which assumes dependently of neighboring points without introducing .jd,ýit~nal con-
that the apparent velocity of the brightness, pattern varics smoothly al- siahilts, because the velocity field at cer.h image point :)as two cont-
most. everywhere in the image. Ali iterative imnplemenitationm is shown porinens while thc change in imiage brigntnecss at a )ýoint in tte image
which successfuiay computes the optical flow ror a number of synthfctic plzcn due to motion yields only one constraint Consider, for example,
image sequences,. 'Ihe algorithm is robust in that it can handle image a patch of a pattern where brightnes3l varies, as a fu-ictmon of one image
sequenc:es that are quantized rather coarwely in space and time. It is coordinate but itot tac other. Mo'vement of the pattern in one dire
also insensitive to qlianti~ation of brightness levels and additive noise. tion alters the brightness at a particular point, but motion in the other
FAamtples are included where the assumption of snioochness is violated direction yields no change. 'lhus components of movement in the latter
at singular points or along lines in the image. ictocaotedtrm edlaly

2. Relationshuip to Object Motion

1. InrodutionThe relationship between the optical flowv in the image plane
Optical flow is (tic distrib ition of appv%.ent velocities ty! imovemrent and the velocities of objects in the three dimensional world is not

of brightness patterns in an image. Optical flow can arisc from necessarily obvious. We perceive motion when at changing picture is
rzlative inotiot, of objects and the viewer 18, 91. Consequently, optical projected oiitn a statiot~a~y z~creen, fior example. Conversely, a moving
flow call give important information about the spatill arrangemenc of object may gike rise to a constant bifjhtness pattern. Coniider, for ex-
the ohjects v'iewco and the rate of change or this arrangement [101. ample, a uniform sphei-c which exhibits sbading horau%.- its surface dcl-
lDiscviainiuti ties ini the optical flow can belt) ini segmenting imaiges into mentos are oricnted 'Ji many different dircctioný,. Yet, when it is rolated.
regiuins that correspond to differenit objects 1291. Attempts have beep~ the optical flow is ;ero at all points in the image, since the shading
mnade to perform such scgrnenvition using differeices I'etween succes- does not move wvith tH~ surface. Almo. %pcular rel'-xt(ions move with
sive image Fames 117, 18, 19. 22. 3. 271. Several papv.rs- address the a velocity characteristic of the virtual image, not the 'AlrfaCe in wti~ch
piobleni of' recovering the motions of object% relative to the viewer ight is reflected.
fiom the: opticalt flovv (12, 20, 21, 23. 311. Some recent papers provide F-or convenience, we tackle a particularly simiple world wnicre th~e
a clear exposition of this eniterprise [32. 33). 'Ilie mathematics can apparent vvlocity of brightness; patterns can b-- directly i'lcnitified widi
be niaJ-. rather difficuilt, by the way, by cholsing an inconvenient coor- the Inlovememt of sur~hces in the scene.
dinate system. In sonic cabos information about the shape of an object

may also be rec:overed [4, 20, 211, U

iuiese papers Legin by assuming that the opt~cal Pow has already
been determined. Ahliougi %)m,- reference has been made to schemes 3. Tn Restrictedl Pretilein D~omainA

for co.. puting thc flow from succe:ssive ViL'VS of a scene [7, 121, the
spcciaics of a scheme for determining the flew from the imiage have To avohO variations in briglitnes-, rite to shading eff'ccis we initially

not been described. Related work has been done in an attemipt to assuriue that the surface bcing imaged is Am:'. We further asmuume thut
forinulate a model for the short ran,.ge motion detection processes in the iniicnt~t illumination is iniform across thQ surru~.ec. 'I lie brightimss
human visioni 12 241. The pixel recursive equiations of N~travali and

some similarity to the iterative equation-. developed in this paper. th e distribiniou cf irradianre In tOw kiWe.
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at a noint in the iimage is then oroportiotial to the reflectance of the sur-
race at the cirresponding point on the object. Also, we ýissainc at fir'st lh iattiwsosrit
that reflectance iwcrics, smoothly and has no sp.)tial diswon ti nu itics. 'I'hs
lattvr condition assures us tl'a die image brightness is diflercintiablc. If ever, potini of the brightness pattuit can mo% independently,
We c:-cltide, stuations whecre objevs is cclude; ooe mnother, it; part, he, thcrc is 'littl hcpc of m:oe~vrineg ow\ vclocitic~s. More commonly we
cause discontinuities in reflectanoce arc found at object butoiidarits. In view opŽt object3 of finite site undergoing rigid motion or defor-
two of the cxtpcriniciuts discussed later, sonme of the problems occa- mnation. In 'ibi, case neighbilring points on thc objects have similar
sioncd by occluding edges are exposed.' vclo'itics and the %eloeity field (if the briphtness patterns ini the image

Ill te rimpic sittation described, the motion of the brightness .aViCS Sinu~tidiy almost eserywhbere. liscontinuities in flow cat) be cx-

patterns in dic iniag. is dienermiincd directly by die motions of ccr- pected where one object occludecs another. An algorithm based on a

tresponding. points onl the surracee of the. object. Conmputing tlhe smoothness constraint is likely to hate difficultics With occluding edges
vclociti:ýs of points on dic okiect is a matter of simple geometry once as a result.
die optical flow is known. One way to zxpress dthe additional citistraitit is to niiinimii the

squiare of the niagnifiude of the graidient of the optical flow vclctnc h

4. ('oniitramiuts (Oi ) + (~2 and -- ()

We will derive an equation that relates the change in imnage Another otensureof die sinoothcce~s of the opticai flow field is the sum
briglitncss ict( a point ito the motion of dthe brightne,.s patiern. Le~t the of the squares o.f the I apiacians (,f the two velocity components. 'h
image brightness at the point (z, V) in the imiage plane it t.nie I be i aplacians of a and v i-.re defined i-Q
denoted by E(z, y, t). Now consider what tippews when taic pattern

romes "e brightairss of a particot~ir point in the pattern is:onlstenL se &U z1.. ndV' = (O2V.(+ *V
thatei. -I- Jhp and2 OV

.__ =+
that ~dE' In týimiplc situa~tionsi. boith Iaplacians are z.ero. If the viewer translates

Using the Oviti nile for dilfztentiation we see that, parallel to a flat objeec, rotates about at line perpendicular to the surface
or travels orthogonally to the surface, then the wLeu d part'al deriva-

OFy -X o9 tV O ives oC both u and v vanish (asstiming perspective projection in the
O t 69 dtL t image forniation.)

(SceeAppendix A for at ciare detailcd derivation.) lfwe let lit this paper, we will use th square of the rnagnitide o~f the
gradicnt, as Our smncothncess mecasure. Note that our approach is in

dzdt contrast with th-tt of [7], who prepose an algorithm that incorporatesU= - and v--
dl diadditional assumption- such as constant flow velczities within divtme

theni it is ci.sy vise that we have at single linear cqti'tion in the two regions of the hitage. 'thecir method, I ased onl cluster analysis, canaot
unknowns is and t, deal with routing objects, since these give risec to a cooi-;nuum of flow

wherc we haive *cso hitroduced die additional obbrei-cations E, E,, and
byfo this partial deisvluatied oi igiriag bI.\hiting, vthe equlptio to stll5.~ yesl'in othe thjan ie ohioni one havseccinavtge

and i, iv~ ~Tivl.he conwraiiit on the local flow velocity expressed Imagcs m-y b\, sampled at intervals on a fixed grios of points.

anothe way, v) -E.t1, 21.1 for cwi\ enicrnec wec will assumne that the image: is rampled ona
(r~E,)(cc) - 1.squamre 1ý'id at regular intctrsals. Let the mneasured brightness be Eij~

nlitj. th'o complonenut of the movement in the direction of tIhe bright- at th,~ intetscction of the i-di row and j-th coluratm in the k-th jintigeJ
ness gradictit (F,, E,,) eq~uals framv. Ideally, eacli meaisuremrent should. vc an lverage over die area
k of a picture weil arid aver the eitigtli of the time interval. IH the experi-

- ,L inents cited here we have taken samnpies at lisrete points lin spac'i and

+ time ins.ead.
In adcliticin to being quant~ized iiit pacv antd r-~ic, die mes-lirc-

We cartno!. however detcnnme.i the compuncrnt of th. tmovenment in tkse rm'its will irn practice bec qi~citized in brightniess as well. l'uriher, -iisc

dir-etitim of die iso-brightness contours. ai right anigles to the br~ght- wil bec apparent in mecasurements lv!-tainc-l in iny real system.
ness gradiont. As a conseqoceni-P, the flow velocity (u, v) cannot be

It e~~onip-wm locally without io'roducing addittonat constraints.
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: 7. I'S1ln,11ti1 the Partial Derivatives 9. Minimization

We must estimate the derivatives of brightnes from the discrete The problem then is to minimize the sum of the errons in the

set of image brightness measurements available. It is important that equation for the rate of change of image brightoem,

thz estimates of E,, EM, and Er be consistent. That is, they should all

rc me point in the image at the same time. While there = £u + Fvv + F4,

nr.. ,. .- r approximate differentiation [S, 13) we will use
i=a -,: winch styes us an estimate of E., E,. E, at a point in the center and the measure of the departure from smoothness in the veloacity Raow,

of a cubc formed by eight measurements. 'lhe relationship in space 2

and time between these measurcments is shown in re ach of+
the estimates is the average of four first differences taken over adjacent

measurements in the cube.
m What should be the relative weight of these two factors? In practice

I the image brightness; measurements will be corrupted by quantizallos
E• • +,• -- ,,v + E 5+i+i,k -- E+ij,• error and noise so that we cannat expect 8b to be identically zero. This

-+ Eij+i,k+i -'Ei,j,k+i +Et+,i,+ 4 i+1 -- Ei+- 1-,+i+} quantity will tend to have an error magnitude thit is proportional to

E {i+ij, -- i,kk +E i+t,j+ik -- EQ,,k the noise in the measurement.,This fact guides us in choosing a suitable
+ Ei 4 ,1J,k+t - EI,k+- + E 1+,,j+s,;+i - Ei,j+ik++} weighting factor, denoted by a2, as will be seen later.

s {Eijk,+ I - EA,,, + Ei'+ tjk + I - Ei+ L, Let the total error to be minimized be

'+ Ei,-k+1 - Ei,,++,k + E1+,j+i,k+t - EA+ -tid- -} a= j 2jdxdy.

Here the unit of length is the grid spacing interval in each image frame 'he minimization is to be accomplished by finding suitable values for
the optical flow velocity (u, v). Using the calculus ot'variations (6, pp.

and the unit of' time is the image frame sampling period. We avoid es- t

timation formulae with larger support, since these typically are equiv- 191-921, we obtain

alent to formulae of small support applied to smoothed images [161. E'u + E•Ev = CsV2 u -_ EAE1
EEiu + E2V = oCl,2V -E_.&.

Using the approximation to the Laplacian introduced in the previous

section,
(•2 + E•)U + E2Ev = (a% .- E,)

,E~Eu + (a' + E')xv = (026) - E~E4 '

8. Estimating the L.aplacian of the Flow Velocities The detenninant of the coefficient matrix equals al(02 + E,- + E2)•

3olving for z and v we fir4d that ' '
As will be shown in the next section, we will also need to ap- (-2 + r- Eu)u - (02 + E2)is - EEMO -

prox imate the Laplacians of u and v. One convenient approximation +j ET + E2,)u = + ( + ( 2,r,. "- E 5') ' - E .

takes the following form l V=' EJ'4U+ a

V 2U ; r.(ffi,i,k - ui,,k) and V2V F r(bij, -vo,),

10. l)iffcrinee of Flow at a Point from Local Average
where the local average. & and 0 are defined as follows

These equations can be written in the alternate form

I

fiokýý fi-JA UJ4-,k+ U+1~k Uj-ik)(a'+ 4-El. + E2)(u -- f) ---- F• , f*+ F-,o +- F11.

, "J- [ {uiI~iLt t•_,./ ,t ui~~j~~t t•+,j_,t} This shows that the value of the flow veloc:ity (u, v) which mintmies

= l (v.JA + %J+1,k + Vi+Ij.k + ViA,) the error g2 lies in the direction towards the constraint line along a
line that intersects the constraint line at right angles. This relatioanhip

+ ({t-V - ,I k + J ir- J+- k + Vi-t-J.,k + Vi+ij--1,k}, is illustrated geometrically in Figure 4. The distance fiom the locad

average is proportional to the error in the basic formula for rate of

The proportionality factor x equals 3 if the average is computed as chauge of brightness when f, E are substituted for u ard v. Finally

shown and we again assume that the unit of length equals the grid we can see that al plays a significant role only for areas where dth

spacing interval. Figure 3 illustrates the assignment of weights to neigh- brightness gradient is snall, preventing haphazard adjustments to the

boring points. 'te approximation for the ILaplacian uing the center estimated flow velocity occasioned by noise in the estimated derivr

cell and all eight neighbors is more stable than the usual one based on tives. This parameter should be roughly equal to the expected noise in

the center cell and its four horizontal and verticitl neihbors only. the estimate ofLE4 + R.2
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The progress or this filling-in phelnomena is similar to the propaga-

IL, Const rained Mininiailon tion efiects in thie solution or (lie heat equation for a uniform fHat plate,
where the time rate of change of temperature is proportional to the

When wc allow a2 to tend to ;cro we obtain thV solution to a Laplacian. This gives us a means of udiderntanding the iterative method
constrained minimization problem. Applying the method of Lagrange in physical terms and of estimating the number of steps required. The
multipliers 135, 30] to the problem of minnimizing 1 while maintaining number of iterations should be larger than the number of pictures cells
9b = 6 leads to across the largest region that must be filled in- If the size of such

,V 2u = E V2xv, Eru -+ Euxv + = 0. regions is not known in advance one may use the cross-section of the
I-I whole image as a conservative estimate.

Approximating the I.aplacian by the difference of the velocity at a
point and the average of its neighbors then gives us

(E" + E2)(u - it:) = E.A~ft + EBi + Ell
(E, + E')(v - v) = - E[E1R,. + E`i + -•,l

Referring again to Figure 4, we note that the point computed here lies 14. 1i ighl -" of Constraint
at the intersection of the constraint line and the line at right angles When brightness in a region is L linear function of the image coor-
Sthrough the point (ft, g). We will not use these equations since we do dinates we can only ohtain the component of optical flow in the direc-
expect errors in the es.innation orthe partial derivatives. tion of tie gradient. The component at right angles is filled in from the

boundary of the region as described before. In general the solution is
most accurately detemined in regions where the brightness gradient is

12. Iterative Solution not too small and vafiis in direction from point to point. Infbrmation

We now haie a pair of equations for each point in the image. It which constrains both components of the optical flow velocity is then

would be very costly to solve these equations simultaneously by one availabl in a relatively small neighborhod. Too violent fluctuations
of the standard methods, such as Gauss-Jordan elimination [1, 141. in brightness on the , ner hand arc not desirable since the estimates
The corresponding matrix is sparse and very large since the number * of the derivative, will be corrupted as the result of indesamipling and

of tows and columns equals twice the number of picture cells in the aliasin.
image. Iterative methods, such is tie Gauss-Seidel method [13, 151,
suggest themselves. We can compute a new set of velocity estimates
(U11+I, Vt+I) from the estimated derivatives and tie average of the
previous velocity estimates (u0, 0) by

u,%+ =,t - EAIEi, + 40" +- E]/(a2 + E•z + EZ)
v( t I + Ei11 +g+ ) IS. Choice oa Iterative Scheme--v - `[,. 4- F,11 +- Etll(Q2 +- E' +- E2).

(it is interesting to note that the new estimates at a particular point do As a practical matter one has a choice of how to interlace the itera-
not depend directly on the previous estimates at the same point.) tions with thIe time ster s. On tdie one hand, one could iterate until the

The natural boundary condition for the variational problem turns solution has stabilized before advancing to the next image frame. On
out to be a zero normal derivative. At the edge of the image, some of the other hand, given a good initial guess one may need only one itera-
the points needed to compute the local average of velocity lie outside tion per time-step. A good initial guess for the optical flow velocities is
the image. Here we simply copy velocities from adjacent points further usually available from the previous time-step.
in. The advantages of the latte: approach include an ability to deal

with more images per uni ...ne and better estimates of optical flow
velocities in certain regions. Areas in which tie brightness gradient
is small lead to uncertain, noisy estimates obtained partly by filling

13. Fillinig In Uniform Regions in from the surround. These estimates are improved by considering

In parts of the image where the brightness gradient is zero, the further images. The noise in measurements of tie images will be inde-
velocity estimates will simply be averages of the neighboring velocity pendent and tend to cancel out. Perhaps more importantly, different
estimates. There is no local information to constrain the apparent parts of the pattern will drift by a given point in the image. Tlhe direc-
velocity of motion of the brightness pattern in these areas. Eventually Lion of the brightness gradient will vary with time, providing informa-
the values around such a region will propagate inwards. If the velocities tion about both components of the optical nlow velocity.
on the border of the regio:n are all equal to the same value, then points A practical implementation would most likely employ one itera-
in the region will be assigned that value too, after a sufficient number tion per timie step for these reasons. We illustrate both approaches in
of iterations. Velocity information is thus filled in from the boundary of the experiments,
a region of 0onstant brightness.

If the values on the border are not all the same, it is a little more
difficult to predict what will happen. In all cases, the values filled in
will correspond to the solution of dte Laplace equation tfr the given
boundary condition 11, 26, 34].
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16. Experiments
In the examples so far the Laplacian of both flow velocity corn-

The iterative scheme has been imp',enleted and applied to image ponents is zero everywhere. We als) studied more difficult cases where
sequences corresponding to a number of simple flow patterns. The this was not the case. Iln particular, if we let the magnitude of the
results ihown here are for a relatively low resolution image of 32 by velocity vari as the inverse of the distance from the origin we generate

k: 32 picture cells. lTe brightness measurements werc intentionally cor- flow around I line vortcx and two diniension'il flow into I sink. The
rupted by approximately 1% noise and then quantiied into 256 levels computed flow patterns are shown in Figure 9. In these examples, the
to cintilate a real imiaging situation. 'lle underlying snrfi.ce reflectance computathm involved many iterations based on a single tinte step. The

pattern wa,. a linear combination of spatially orthogonal sinusoids, worst errors occur near the singularit3 at the origin of the flow pattern,
'Their waivelength was chosen to give rciis,". ty ., • 'rightness where ehlocities are found which are much larger than one picture cell
gradients without leading to undersanil)linE ,,*.obl( ;.. - ;G,:ontinuities per time step.
were avoided to ensture that the required derivaw.,; ' ý( everywhere. Finally we considered rigid body motions. Shown in Figure 10

Shown in Figure 5. for exanip! ,, zre four tr.;r,',: of a sequence are the flowvs computed futr it cylinder rotating about its axis and for
of images depicting a sph- , rotatin;., about an axis inclined towards a rotating sphere. In both cases tile ILaplacian of tile flow is not zero
the viewer. A smoothly varying reflectance pattern is paintecd on the and ill fact the I aplacian of one of the velocity components becomes
surface of the sphere. The sphcre is illuminated uniformly from all infinite on the occhuding hound. Since the %elocilies themsehes remain
directions so that there is no shading. We chose to work with synthetic finite. reasonable solutions arle still obtained. 'lThe correct floA pattcrns
image sequences so that we can compare tihe tesults of the optical flow are shown in IFigure II. Comparing the cotmptted and exact values
conliputation with the exact %ahl"s calculated using the trinsfuornation shows that the worst errors occur on the occluding boundary, These
equations relating image coordinates to coordinates on tile underlying boutndarics constitute a one dimensional subset ot'the iplae antd s) one
surface reflectance pattern. can expect that the relative number of points at which the estimated

flow i, sclrioisl) in error will decrea:;c as the resolution of the inlage is
inade finer.

In Appendix II it is shovn that there is it direct relationship be-

17. Results tween tile I •aplaciatt of tlie flow velocity components and the ILaplacian
of the surface height. "1 his can be used to see how our smoothness

"The first flow to be investigated wNas a simple linear translation of constraint wi!l fare for different objccts. For example, a rotating
the entirc brightness pattern. The resulting computed flow is shown poly hedroll will give rise to a flow which has wero ILaplacian except on

as a needle diagram in Figure 6 for I, 4, 16, and 64 iterations. The the image lines which are the projections of the edges of the body.
estimated flow velocities are depicted as short lines, shoting the ap-
parent displacement during one tine ,lStep. It) this example a single time
step was taken so dJit the comnpLutat ions aie based on just two images.
Initially [he estimates of flow velocity are zero. Consequently the
first iteration shows vectors itt the direction ofl tie brightness gradient.
I.i:tcr, tile estimates approach the correct %aloes in all parts of the 18. Summnary
image. Few changes occur aflter 32 irerations when die velocity vectors A method has been developed for computing ontical flow from
have errors of about 10%. The estimates tend to he too small, rather a sequene of. images. ft is based on the observation that the flowthan too large, perhaps because of a tendency to underestimate the velocity has two components and that the basic equation for the rate of

derivatives. 'lie worst errors ccmr, as ,ne might expect, where the change of inage brightness provides only one constraint. Smoothness

of the flow was introduced as a second constraint. An iterative method
In the second experiment one iteration was used per time step on fur solving the resulting equation was then developed, A simple im-the same linear translat~on image sequence. The resulting computed plemoentation provided visual confirmation of convergence of the solu-

flow is shown in Figure 7 for 1, 4, 16, and 64 titne steps. '[he estimates tion in the form ofncedle diagrams. Examples of several different types
approach the correct values more rapidly and do not have it tendency of optical flow pattecns were studied. 'liese included cases where the
to be too small, as in the previous experiment. Few changes occur raplacian of the flow was zero as well as cases where it became infinite

after 16 iterations when the velocity vectors have errors of about 7%. at singular points or along bounding curves.
The worst errors occur, as one might expect, where the noise in recent

measurements of brightness was worst. While individual estimates of '[he computed optical flow is some%%hat inaccurate since it is based
velocity may not be very accurate, the average over the whole image oin noisy. quantized measurements. Prtnposcd methods fur obtaining
w,: within 1% of the correct value, infrtoration about the shapes of objects using deritatives (divergence

Next, thc method was applied to simple rotation and simple con- and curl) of the optical flow field may turn ott to be impractical since
tr,! lion of the brightness pattern. The results after 32 time steps are the inaccuracies wil! be amplified.

shown in Figure 8. Note that the magnitude of the velocity is propor-
tional to the distance toim the origin of the flow in both of these cases.
(By origin we mean the point in the image where the velocity is zero.)
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Figur 1. IlThe batsic rate Ot'chaluge Vf imlage bi ightncss equation con-
Strains thie op1)1 al ilow velocityv. ''llc velocity (is, v) has to lie along
it liIv nPerpenldicular it) the b rightness gradient vert ar (~,Ej) rill
dis'auiee of h1is li (III (imote orlpin equasLttIE d:. ided by thie mnagnitude
of (Ell,, F111.
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Figureo 2. T he Iii re partiial 'ten'at k'esol image h righunscsm tithe cell-
tel oft tile Couime are each sllited frio.nl the aietrage of I•N• dilferences

Zlong Aour 1)1r1lll edges of the cuhe. II ere the column ndex j cor-
respoids to the x diret lion in tie image, the row index i to the y
direction, while k lies iii the thne direction.
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Flguro 3. Thle I apht.1ian is c.sdin.,ad by subtracting the value at a

point trinl ia %ci-hied average oif the %alies at niicghboiin ons
Show[] here are swuihle weights by which values can be multiplied.

,. • (Ex,Ey)

U

Flguro 4. Thie value or tlhe flow velocity which minimizes the error constraint line
lies on aline drawn fiiom the locai average of the flow velocity perpen-
dictilar to tile constraint line.
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COMPUTATIONAL STERFO FROM AN III PERSPECTIVE*

Stephen T. Barnard
Martin A. Fischler

SRI International, Menlo Park, California

images are recorded simultaneot, ly, or nearly so,
I INTRODU'TION by laterally displaced cameras. In movion paeallax

two or more images are recorded seeuentially,
usually with a single camera that moves in an

This paper surveys and evaluatec computational arbitrary direction. In a sense, convenzional
methods for the recovery of depth information from stereo can be considered to be a special case of
multiple images. We identify the major functional motion parallax, and the same geometrical
components rhat comprise these methods, list formalisms apply to both. In practice, they are
various alternatives for implementing them, and often treated in different ways and are used in
analyze the dorsin-dependent and application- different domains; for example, motion parallax
dependent constraints that favor some ilternatives stereo forms the basis for most of the cartographic
over others. Finally. we outline a program for products derived from aerial surveys while
evaluating the various components and systems on conventional stereo is preferred for three-
the III Testbed. dimensional biological itaging systems.

The scope of this paper is restricted to Stereo is an attractive source of information
research in the image understanding community. IU for machine perception because it leads to direct
researchers have drawn on stereo work from other range measurements, and, unlike monocular
areas, especially cartography, psychology, and approaches, does not merely infer depth or
neurophysiology. We will not try to cover all the orientation through the use of photometric and
IU research relevant to stereo, but instead will statistical assumptions. Once the stereo images.
select a cross-section of the most widely-known are brought into point-to-point rorrespundence, the
work that covers all the important and recovery of range values is a relatively
significantly different approaches to the stereo straightforward matter. Furthermore, Gtereo is a
problem. passive method. Active rangi-g methods that use

structured light, laser rangefindsrs, or other
Much of the research in image-understanding active sensing techniques are useful in ttghtly

has been devoted to recovering the range and controlled domains, such as industrial automation
ori,!tstation of surfaces and objects depicted in applications, but are clearly unsuitable for most
imaged data. The earliest work concentrated on an machine vision problems.
artificial domain -- the "blocks world."
Significa ý (but not necessarily extendable) Perhaps the most common tse of computational
advances were made in this simple domain; in stereo is in the interpretatio2 of aerial images.
particular, it was shown that edge and vertex Other appli-ations are passive navigation for
labe]ing schemes cotld provide constraints that autonomous vehicle guidance, industrial automation
allowed one to correctly partition a complex scene. applications, and the interpretation of micro-
More recent work, which has concentrated on real stereophotographs for biomedical applications.
world problems, can be divided into three classes: Each domain has different requizements that can
(1) those that acquire range information directly affect the design of a complete stereo system.
with an active sensor, (2) those that depend on
monocular information available in a single image
(or perhaps several images from a single viewpoint
under different lighting), and (3) those that use
two or sore images taken from different viewpoints
and perhaps at different times. We are concerned II THE COMPUTATIONAL STEREO PARADIGM
here with this third class, which we shall refer to
as "generalized stereo."

Research on ccouputational solutions for the

The getneralized stereo paradigm includes generalized stereo problem has followed a single
conventional stereo, as well as what is often paradigm, although there have been several distinct
called motion parallax. In conventional stereo two variations, both in method and intent. The

paradigm involves the following steps.

* The Research described in this paper is based on work performed under Adavnced Research Projects 4gency
Contract No. MDA903-.79-C-0588.
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* Image acquisition matcher. The relative abundanne of occlusion edges

in a city scene also causes problems be:ause large

* Cak3ra modeling portions of the images mty be unmatchable.

Cultural ob.,ects often have large surfaces with

* Feature acquisition nearlyf uaiform Albedo tnht are difficult to match

becau'se of t lack of detail. Stereo systems that

* Matching have been rqported in the li:narat;ure are u.u:4i1y

targeted at u op2clfic P"eni doiain, and there is

* Diatarce (depth) determination seldon _ny attempt to validaze the methods tn other

domains.
Interpolation

In summsry, the key parameters associated with

image acquisition rre:
A. Image Acquisition

* Scene domain

The most important factor affei:ting Image

acquisition is the specific application for which Timing

the stereo ccputation is intended. Three - Sinultaneous

applicationn have received the most attention: the - Nearly simultaneous .1
interpretatrin of aerial photographs for .utotated - Radically different times

cartography, guidance and obstacle avoidance for

autonomous vehicle control, and the modeling of * Time of day (lightifn and presence of

human stereo vision. shadows)

Aerial photo-interpretation involves ,w- * Photometry (includin5 spectral windows)

oblique and usually low-resolution images of a
variety of terrain types. The stezeo images are * Rcsolutioxý

usually interpreted as pairs, rather than as longer
sequences involving more than two images. * rield .f view

Stereo for autonomous vehicle control has been * Relative camera positioning (length and
studied in two contexts: as a passive navigation orientation, relative to the scene, of the

aid for drone aircraft, and as a control system for stereo base line).

surface vehicles. The images used for aircraft
nqvigation are similar to the aerial photographs The issues associatud with the sceau domain
used for cartography, except thai long sequences of are percentige of:

images are used, and multispectral sensors are
often employed. The images used for surface * Occlusion
vehicle control are quice different -- they are

high-_olique, comparatively high-resolution images. * Man-made objects (straight edges, flat
surfaces)

Research on computational models of human

stereo vision have mostly used synthetic random-dot * Continuous surfaces of some minimal extent
stereograms as their subject matter for
experimental investigation; the primary reason ior * Textureless area
this is that random-dot stereograms exclude all

monocular depth cues, and the exact correspondences * Area containing repetitive structure.

are known. Because the parameters of a random-dot

stereograms, such as noise and density, can
controlled, they allow systematic comparison of B. Camera Modeling
human and machine performance. Crimson has also

reported experimental results with natural imagery Perspective geometry can be used to constrain
El]. the search for matches to one dimension. The

extended line connecting the perspective centers of

Perhaps the most significant and widely two cameras is called the air base; the points
recognized difference in scene domains is the where the asi base intersects the image planes a.e

difference between scenes containing cultural the epipoles; and a plane that contains the
features such as buildings and roads, and those epipoles is an epipolar plane. Every point in one
containing only natural objects and surfaces such image of a stereo pair defines an epipolar plane.

as mountains, flat or "rclling" terrain, foliage, and the corresponding point in the other image must

and water. Important stereo applications range lie in the same plane. The search for a match of a
over both domains. Low-resolution aerial imagery, point in the first image may therefore be limited
for example, usually contains mostly natural to the line in the second image that is the

features, although cultural features are sometimes intersection of the epipolar plane with the image
found. Industrial applications, on the other hand, plane, commonly called an epipolar line.
tend to involve man-made objects exclusively.
Cultural features present special problems. For If the stereo pair is "perfect," the epipolar

example, periodic structures such as the windows of lines are coincident with the horizontal scan lines

buildings and road grids can confuse a stereo -- 7 convenient situation because the matching
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process can be made relatively simple and * Ability to deal with matching errors
efficient. Stereo uyetems that have been primarily
concerned with model-rig human ability have used * Compensation for image distortion
this approacn [1,2j. In practical applications.
however, the stereo pair may be imperfecý. In
aerial stereo photegrammetry, for example, the C. Feature Acquisition
ccme.ra axis may typically be tilted as much as two
to three degrees from vertical [3]. The That 'eatureless areas of nearly homogeneous
implication here is that points on a si~sn line in brightness caunot be matched with confiaence ir
one image will not fall (,n a s•.agle scan line in ,iidely recognized. Accordingly, most %4ý:k in
the second image of the stereo pair, and thus, Che onputeticnal stereo hAs inoluded somu Corm of
computational cost to employ the epipolar local f4.ature detection, cbe partirular form of
constraint is significantly increased- which is closely coupled with the datchiM• strategy

used.
The relat:lve position of the two camera

ponitions is called the camera model. Camera Approachebs that apply area crosg-correiation
models are important because they allow one to matching often itee an interest operatcr to locate
exploit the epipolar constraint. In most cases. piaces in one imtae thot can be matched with
considerable a priori knowledge of the .amera roel confidence. One way to do this -.s to select. areas
is available, but it is aften not as accurate a6 that have high variance. These areas will not be
desired. Cannery [4] has developed a method fcr Sood features, however, if the variance is due only
solving for tae camera model from a relatively few to brightness differences in the direction
sparse matches. His method accounts for perpendicular to the epipolar ±ine. Thepe areas

L differences in azimuth, elevation, pan, tiLt, roll, can be culled by demanding that the t4o-dimensional
and focal length. autocorrelation function have a distinct peak.

Another widely use6 interest operator is the
vischler and Bolles [5] have provi&ed a nunber Moravec operator [6], which selects points that

of results with respect- to the minimum number of have high variance between adjacent pixels in four
points needed to obtain a colution to the camera directiona. Hannah hac modified this operator to
calibration problem, given a single image and a set consider ratios of directional variances as well as
of correspondences between points ir. the image ind ordinary isotropic variance over larger areas, and
tneir spatial (geographic) locatiors; they also this modified operator seems to locate a better
provide a techniq'ie foc soivlng for the complete seloction of both strong and subtle features.
camera model, even vhen the given correspondences
contain a large percentage of errors. While this Feature detection is more centrally important
aork was directed at the problemx o- ustablishiog a to those approaches that directly match features in

mapping between an Image and an existing geographic the stereo images. The features that are used may
database, 1.t is obviously possible to apply the vary in size, direction, and dimensi.t tlity.
resu•.ts to the stereo problem, and in fact, tying
the stereo pair to an existing database offýrs the Point-like features are good candidates for
possibility of employing constraint3 beyond thoje matching when the camera model is unknown and the
available from the imagi.g gefeetry. matches are not constrained to epipolar lines.

Thiis is because, unlike linear features, points are
Camera rcodeling can be extended to include unambiguously located in the image and can te

distortions introduced in the image-making process. m.t.Lhed in any direction. Linear features must be
Sig•ificant image distortion will deg.rade the orientted across the epipnlar lines if they are to
accuracy of depth measurements made by a stereo bi. matched accurately. Another advantage of point-
system unless corrected. Two kinds of image like features is that they can be matched without
distortion <.re found; redial and tangential. concern for perspective distortion. In area,.
Radial disturtion causes image points to be correlation approaches point.-like features are
displaced perpendicular to the optical axis and may Aften used to obtain the camera model prior to more
occur in the form of ,.in-cushion distortion (i.e., extensive matching. The local intensity values
positive radial distortion) or barrel distortion arcund a point can be used to establish initial
(i.e., oegative radial distortion). Tangential confidences of matches in a way similar to area
distortion is caused by imperfect centering of lens correlation [7].
elements, resultina in image displacements
perpendicular to the radial lines. Moravec If the camera model is known a priori or
described a method to correct for distortion using derived in a preliminary step, edge elements can be
a squats pattern of of do0a (6]. Fourth degree used as primitive matching feitures. The
pulynomiale are found that transform the measured computational model of human otereo vision
position& of the dots to their nominal positions. described b> Marr and Poggio uses zero-crossings in

the convolution oO a circularly symmetric LaplacianIn su~mmery, the important issues in camera with a Gaussian low-pass filtered image [1], (2].
modeling are.: The zero-crosaings are found in the convolution of

* A priori knowledge of camera positions four .'5ffereutly sized masks. Arnold uues the
Hueckel o~erator to find linear features, but the

* Solutions !tsing, a few sparse matches operator has a fixad size [9]. Baker uses zero-
crosaings of a one-dimensional operator, again of a

* Use of known scene coordinates fixed size [10].
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Many distinct. edge models have been proposed the appearance of nearby objects and in
as the basis for edge-detecting algorithms. li the occlusions. Additional changes in both
case of "strong" edges, most of the resulting geometry and photometry ccn be introduced
algorithms yield similar results for operators of in the film development aol scanning steps,

comparable sires. Often the same underlyin,. model but can usually be avoided by careful

appears in dirferent implementations; e.g., zero- processing.
crossingi In the second derivative are equivalent
to local madcima in the first derivative, and most * Stereo modeling generally requires that a

of the conventional edge detection methods search dense grid of points be watched.
for appro>.imations to firit derivative uvAxima.
More important is how the edge attributes can be ideally, we would like to find the
used for, matching; size, direction, ano magnitude correspondences (i.e., the matched locations) of
(contrt.•t) have been used, but their relative every individual pixel in both images of a stereo
merit is not established, pair. However, it is obvious that the information

content in the intensity value of a single pixel is
too low for unambiguous matching. In practice,

For the most part, low level features have cohere-at collections of pixels are matc'ied. These
L been used for stereo. What we mean by "low level" collect:ions are determined and matched in two

isi that the features depend only on local monocular distinct ways (see the discussion in the preceding
intensity patterns, and are based on the assumption section on feature acquisition):
that more-or-less sharp intensity gradients are
usually due to physically significant structural, Area Matching: Regularly sized
reflectance, and illumination Events ia the scene. neighborhoods of a pixel are the basic
Higher level features that depend on more units that are matched. This approach is
sophisticated semantic analysis have been largely justified by the "continuity assumption,"
unused (Ganaparthy described a system for matching which asserts that at the level of
vertices in blocks-world stereo scenes across very resolution at which stereo matching is
large viewing angles (11]). The ability to feasible, most of the image depicts
classify edges as occlusion or nonocclusion portions of continuous surfaces; therefore,
boundaries, for example, could be very useful to a adjacent pixels in an image will generally
stereo system, especially in the difficult domains represent contiguous points in space. This
that include a wealth of cultural features. approach is almost invariably accompanied

by correlation matching to establish the
In summary, the properties of local features correspondences.

that are important to the computational stereo
problem are: Feature Matching: "Semantic features" (with

known physical properties and/or spatial
* Dimensionality (point-like versus edge- geometry), or "intensity anomaly features"

like) (isolated anomalous intensity patterns not
necessarily having any physical

* Size (apatial frequency) significance), are the basic units that are
matched, Semantic features of the generic

* Magnitude (contrast) type include occlusion edges, vertices of
linear structures, and prominent surface

* Semantic content markings; domain-specific semantic features
might include such features as the corner

* Density of occurence or peak of a building, or a road surface
marking; intensity anomaly features include

* Easily measurable attributes those such as zero crossings and image
patches found by the Moravec interest

* Uniqueness/distinguishability. operator. Methods used for feature
matching often include symbolic
classification techniques, as well as

D. Matching correlation.

Image matching is a core area in scene Obviously, feature matching alone cannot
analysis and will not be cover7ed in in full detail provide the desired dense depth map so it must be
in this paper. Instead, we will focus on those augmented by a model-based interpretation step
portions of the imge-matching problem that are (e.g., we recognize the edges of buildings and
directly relevant to stereo modeling, Features assume that the intermediate space is occupied by
that distinguish stereo Image matching from image planer walls and roofs), or by area matching. When
matching in general are the following: used in conjunction with area matching, the feature

matches are generally considered to be more
Images are taken at approximately the same reltable and can constrain the search for
time and from the saxe viewpoint in space. correlation matches.
Thus, illuminationishadow conditions are
the same talthough there can be significant To further reduce the possibility of error

differences in specular r.iflection). Most caused by an ambiguous match, a number of
of the significant changes will occur in hierarchical and global matching techniques have
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been employed, including relaxation matching and E. Distance Determinatiou
various "coarse-fine" hierarchical matching
strategies. With few exceptions, work in image

understanding has not dealt with the specific
The correlation-matching approach attempts to problem of distanca determination. The matching

resolve ambiguity by using as much local problem is has been considered the hardest and most
information as possible to make decisions about significant problem in computational stereo. Once
potential matches, but each match decision is made accurate matches have been found the determination
independently of the others. The relaxation- of distance is a relatively simple matter of
labeling approach uses a relatively small amount of triangulation; nevertheless, this step presents
local information for each potential match, and significant difficulties, especially if the matches
attempts Lo resolve ambiguity by finding are somewhat inaccurate or unreliable.
consensuses among subsets of the total population
of matches, relying on the three-dimensional To a first approximation, the accuracy of
continuity ,,f surfaces to be reflected in the '.wo- stereo distance measurements is directly
dimensional continuity of disparity. A method for proportt.onal to the accuracy of the matches and
avoiding ambiguity that can be .pplied to both inversely proportional to the length of the stereo
correlation matching (6] and feature point matching baseline. We have, discussed how lengthening the
[2] is the so-called "coarse-fine" strategy. In stereo baseline complicates the matching problem by
this approach coarse disparities are found increasing ambiguity, and how various matchingrelatively quickly, but wich low accuracy. These strategies have been used to overcome this problem

gross disparities are used to bias finer-resolution (coarse/fine strategies, cooperative or relaxation-
matching. Even with a coarse-fine strategy, labeling approaches, and incremental stereo views).
however, some ambiguity at each level of resolution The role that accuracy of matches plays has been
is 'inevitable. The best combination of ambiguity less thoroughly examined. IA
avoidance and ambiguity resolution is a major
research issue. In many cases, matches are made to an ac.uracy

of only a pixel. However, both the area
In summary, key attributes which differentiate correlation and the feature-matching approaches can

matching techniques include: lead to better accuracy. Sub-pixel accuracy using
area correlation requires expensive interpolation

* Local versus global ambiguity resolution over correlation patches, however, and also
complicates feature-matching approaches.

* Area (dense) versus feature (sparse)
matching. Another approach is to settle for one-pixel

accuracy, but to use multiple views [6]. A match
The constraints used to both limit computation frop a particular pair of views represents a depth

and reduce ambiguity include: estimat's with uncertainty that depends on the one-
pixel accuracy cf the match and on the length of

Epipolar the stereo basellne. Matches from many pairs of
views can be statistically averaged to find a more

* Con~tinuity accurate estimate. The contribution of a match to
the final depth estimate can be weighted according

* Hierarchical (e.g., coarse-fine matching) to any factors that bear on the confidence of the
match and on its accuracy.

* Sequential (e.g., feature tracking in

sequential views). In summary, better depth measurements can be

Criteria that can be used to evaluate (obtained in several wvys, each involving overhead:

compare) different matching techniques include: * Sub-pixel matching

* Accuracy (match precision to the sub-pixel * Increased stereo b6iseline
level)

* Statistical averaging over several views.
* Reliability (resistance to g~ross

clasuification errors)
F. Interpolation

* Generality (applicability to different
scene doma:Lns) As previously mentioned, stereo applications

usually demard a dense array of depth estiýmates
* Predictability (availability of performer.ce that the feature matching approach cannot provide

models) because features are sparsely and irregularly
distributed over the images. The area correlation-

* Complexity (cost of implementation; matching approach is more suited to obtainir4 dense
computational requirements). matches, although it tends to be unreliable in

areas of low information. Consequently, some kind
of interpolation step is required.
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The most straightforward way to create the (5) Domain sensitivity - what range of scene
dense depth array from a sparse array is simply to domains can be handled?
treat the sparse array as a sampling of a
continuous depth function, and to approximate the (6) Efficiency - actual timings of stereo
continuous function using a conventional systems will probably not be useful
interpolation method (for example, by fitting because of nonoptimal implementations and
splines). Assuming the sparse depth array is differences in hardware. Comparisons
completi enough to capture the important changes in based on computational complexity can be
depth, &:atisfying the conditions of the sampling made, however. How does the time
theorem, this approtch i•sy be adequate. Aerial required for stereo compilation scale
stereophotographs of rolling terrain, for example, with the image size, with the range of
night be handled in this way. In many disparity, and with other important

agplications, however, the continuous depth parameters? How amenable to hardware
function model will not be appropriate because of implementation are the different methods?
occlusion edges. What efficiency is needed for useful

automated stereo systems?
A more sophisticated approach to the

interpolation problem is to fit a priori geometTic (7) Human engineering - how are the results
models to the sparse depth array. Normally, model displayed (perspective 3D plots, false
fitting would be preceded by clustering to find the coloring, countour plots, vector fields,
subsets of points that correspond to significant etc.)? What are the best methods? Is
structures. Each cluster would then be fit to the human i',teraction allowed?
best available model, thereby instantiating the
model's free variables and providing an (8) Sources of data for experimental
interpolation function. This approach has been validation
used to find ground planes (93, elliptical
structures in stereophotographs [121, and smooth (a) Synthetic images or scaled models
surfaces in range data acquired with P laser (model boards)
rangefinder (133. * Advantages:

Cheap
Certainty about actual

III EVALUATION depths
Control over secondary

parameters

The following criteria are appropriate for * Disadvantages:

evaluating both complete stereo systems and the Not as complex as real-

components of such systems. More specialized world scenes

criteria relevant to individual components of Not representative of any

stereo systems were presented in previous sections real image domain
of this paper. (b) Ground surveys.

(1) Disparity -. what range of disparity is * Advantages:
handled? One possible advantage of Realistic
automated stereo analysis is that Certainty about actual
computer methods may be able to handle depths
larger angular disparities than humans * Disadvantages:
can. Larger disparities lead to more Expensive (hence limited
accurate depth measurements, but also to number of sites that

more difficult matching. can be surveyed)

(2) Coverage - what precentage of the scene (c) Compare to human performance.
is matched? Also, how widely are the * Advantages:
matches distributed? Clearly, large, Realistic
featureless, homogeneous areas canr.,t be Reasonably inexpensive
readily matched. What kinds of * Disadvantages:
interpolation techniques can be used to Susceptible to human errors
extend disparity across such areas? What
monocular techniques can be used to IV SURVEY
enhance coverage (for example,
photometric evidence for smooth
surfaces)? This survey covers a reprtsentive sampling of

the image understanding work relevant to
(3) Accuracy computational stereo. While not exhaustively

covering the field, it does contain examples of all
(4) Reliability - how many false matches are the significantly different approaches to the steps

made compared to valid matches? What in the computational stereo para'igm. The work
methods are effective for detecting and dascussed in the survey is roughly grouped
elimtaating false matches? according to the research centers where the primary
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investigators are reiident, although exceptions stereo pair. Won-matched edges ,re assumed to be

will be found. Other organizations were due to noise or occlusions. Depto• along an
co-icidered, but none ýias entirely satisfactory. epipoLar line (corresponding to a .hree-dimeisional

profile line in the scene) is assumkd to vary
linearly between contiguous pairs of matched
intersections. Special techniques art developed to
deal with occlusions and "reversalti." Edge-
tracking across sequential epipolar lints (the

Control Data Corporation continuity constraint) contributes to reliability.

A flexible approach to digital stereo mapping, [14]

This work is concerned with the automation of
stereo-mapping functions. The primary concerns
have been with handling different kinds of terrain Lockheed
and sensors, efficient hardware implementation, and
the develonment of an interactive mapping system. Bootstrap stereo, [15]

A regularly spaced grid of points in the left The goal of this study is navigation of an
image is matched in the right image. ?atching is autonomoL4 aerial vehicle using passively sensed
done by searching along the corresponding epipolar images, using a method called "bootstrap stereo."
line in the right image for a maximum correlation Ground control points are used to determine the
patch, which is warped to account for predicted vehicle's location and a camera model is used to
terrain relief (estimated from previous matches). locate further correspondences. Major components
Sub-pixel matches are obtained by fitting, a of the system are camera calibration, new landmark
quadratic to the correlation coefficients and selection, matching, and control point positioning.
picking the interpolated ,maximum. The complete system will consist of several

navigation "specialists," Including ones using
"Tuning parameters" may be dynamically altered instrumentation (altimeter, airspeed indicator,

to adapt the system to sensor and terrain attitude gyros), dead reckoning, landmarks, and
variations. Some tuning paramrters are grid limits stereo.
and interval sizes; patch size and shape; number of
correlation sites alone the search segment; Camera calibration is achieved with standard
prediction function weighting coefficients; and least-squares methods to determine position and
reliability thresholdr, for the correlation orientation of the camera.
coefficient, standard deviation, prediction
function range, and !ilope of the correlation New landmark selection involves an adaptation
function. The intent is to choose the smallest of the Moravec operator that uses ratios of
feasible patch, subject to the need to compensate directed variance along two orthogonal directions
for noise and lack of intensity variation in the (instead of simply the directed variance in four
image, directions).

A continuity cmnstraint is used to predict Point matching is accomplished with normalized
matches. The rate of change of disparity is cross-correlation using a spiraling grid search.
assumed to be continuous. This constraint is also Coarse matching is used to approximately register
used to shape the correlation patches in the left the images and to initialize second-order
image (uriing a linear interpolation and b -linear prediction polynomials. Autocorrelation

resampling). thresholding is used to evaluate the reliability of
matches (Good matches have sharply peaked

The reliability of matching is continuously autocorrelation functions.). Subpixel matching
monitored to signal when parameters become accuracy is achieved through parabolic
inappropriate or when the photometry prevents valid interpolation of the correlation values.
matching. Reliability is estimated with a
combination of correlation coefficient, patch Control point positioning involves determining
standard deviation (are features present?), the depth of matched points. It is done with
distance of maximum from predicted point, straightforward triangulation.
prediction function limits, and slope of the
correlation function.

The system nis implemented on a highly parallel
configuaration oi 4 CDC Flexible Processors, each
capable of 8 MU•'S. Stanford

A somewhat diffeg'ent approach has been taken (1) Stereo-camera calibration, (4]
for three-dimrsional modeling of cultural sites
(e.g., building; complexes) from high-resolution A method for determining the relative position
images. The basic idea is to identify and orientation of two cameras from a set of
corresponding points of intersection between matching points is developed. The calibration
epipolar lines and edges in the two images of a accounts for difference in azimuth, elevation, pan,
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tilt. icoll, and focal length. The basic method is is done with a minimal spanning tree approach. The
a least-squares minimization of the errors of the author suggests the us-. of relaxation for
distances of points in image 2 from their predicted clustering. Next, the ellipsoids are adjusted to a
locations, as determined by their positions in better fit with a modified least-squeres method.
image 1 and an estimated camera model. The Two types of errors are considered: the amount by
nonlinear optimization problem is solved by which the points in a cluster being fit miss lying
iterating on a linearization of the problem. un the ellipsoid, and the amount by which the

ellipsoid occludes any points as scen from the
(2) Local context in matching edges for stereo camera. (Orthographic projection, not central

vision, [91 projection, is assumed.) In addithon, there is an
a priori bias to make any small ellipsoids

This approach matches corresponding features approximately spherical.
instead of matching areas using cross correlation.
Features are edgP elements produced by a Hueckel After ellipsoids have been fit to the original
operator. The approach uses a continuity clusters, it may become apparent that the initial
constraint to resolve ambiguity. If a scene is clustering, based on only local information, did
continouous in three dimensions then adjacent not produce a good segmentation. In this. case, the
matching edge elements should be continuous in initial clusters are either split or merged and
direction and dioparity. Intensities on either another set of ellipsoids is fit to them.
side of the edge should also be consistent.

Although this work does not addre3s the
The Moravec operator is used to select about central problems of computational stereo, it is an

50 points. A coarse/fine search finds matches for interesting way of both smoothing and interpreting
some of these points, and Gennery's camera model raw depth information made available from stereo.
solver is used to determine the parameters that The ellipsoid model is plausible for moon rocks,
relate the two camera positions. A ground plane is but probably not for most other objects.
fit to the matches (few points may lie below the
ground plane, some may be above it, and as many as (4) Visual mapping by a robot rover, [6]
possible lie on it). A Hueckel operator is applied
to both images (3.19 pixel radius), and the results This is a study of autonomous vehicle
are transformed into a normalized coordinate system guidance. Severe noise problems are overcome by
such that the stereo axis is in the x direction and use of redundancy. An early approach that used
points on the ground plane have zero disparity, only motion stereo was found to be unworkable

because of matching errors and uncertain camera
Each edge element in the left picture is models. The latest approach uses "slider stereo"

matched to nearby candidates in the right image to obtain nine stereo views at 6.4 cm intervals. A
(there are usually about eight candidates) based on calibration step determines the camera's focal
the angle and brightness information supplied by length and distortion from a digitized test
the Hueckel operator. Each edge in the left image pattern.
is then linked to all its neighbors that seem to I'
arise from the same physical edge. (Two edges ara Ar interest operator is used to select good
neighbors if they are close, have roughly the same features for matching. First, for each point it
angle, and similar brightnese. Three or four are computes the variance between adjacent pixels in
typically found.) The linked neighbors of an edge four directions over a square (3x3 pixel)
element vote to determine which of the candidate neighboriDod; next, It selects the minimu- variance
disparities is most consistent. as its interest measure; and finally, it chooses

feature points where the interest measure is
Some problems caused by the Hueckel operator locally sttximal. Intuitively, each chosen point

are identified (for example, it is unreliable for must have relatively high variance in several
corners, textured areas, and slow gradients). The directions, and must be more "interesting" than its
author suggests relaxation as a way to uoe context immediate neighbors. The interest operator is used
in a more controlled way (see [71). The system on reduced versions of the images.
works well in scenes of man-made objects, but
poorly in natural scenes (the opposite of area A binary search correlator matches 6 x6 areas
correlation). denoted by features in one iwage to areas in

another image. The search begins at the lowest
(3) Object detection and measurement using stereo resolution (x16 reduction) and proceeds to the

vision, [12] higher resolutions. In this way, points chosen
from the center view are found in the other eight

This study uses stereo or rangefinder data to views. The uncertainty of the depth measurement
detect and measure objects, and although it does associated with a match is inversely nroportional
not deal with the matching problem, it is relevant to the length of the stereo baseline. To obtain
to the interpolation and interpretation problems. more accurate depths, the measurements are averaged
The system is intended for autonomous vehicle by considering each of the stereo baselines
guidance and obstacle avoidance, obtained from the thirty-six combinations of nine

views taken two at a time. A measurement from a
First, the ground surface is found as particular pair contributes a normal distribution

described by Arnold in (9). Above-ground points with a mean at the estimated distance and a
are clustered and ellipsoids are fit. Clustering standard deviation inversely proportional to the
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stereo baseline. The curves are also normalized difference operacion correspond to extreme aft,\ a
according to the correlation coefficients of the first difference operation. This method is
matches (a low coefficient reduces the irea) and therefore a way of finding edges at different
according to the degree of y-disparity (* large y- scales. In the implementation of the theory bar
disparity reduces the area). The peak in the sum masks were not used; instoad, circularly symmetric
of these distributions gives a very reliable depth differences of Gaussians were used ta approximate
measurement. the Laplacian of a Gaussian distribution. The

convolutions were done on a LISP machine and
Depth measurements are used to drive the special-purpose hardware. In the original theory

vehicle in about one-meter incremont&. Vehicle line terminations were to be used as features,
motion is deduced from depth measurements at two along with zero-crossings, but this has not been
positions by comparing the differences of point implemented.
positions, which should be the same in both views.
Each point is modeled as a sphere -hose size Zero-croeqings where the gradient is oriented
depends on the uncertainty of the point's position. vertically are ignored (The implicit camera model
The vehicle is modeled is a three-meter sphere. has the epipolar rays oriented horizontally.).
From these, a near optimal path is determined to a Other zero-crossings are located to an accuracy of
goal point, one pixel and their orientations (determined by the

gradient of the convoluton values) is recorded in
increments of 30 degrees.

Matching within any given channel proceeds
MIT indepmndently of other channels. First, the "eye

position" is fixed ,.nd a zero-crossing is located
(1) Cooperative computation 'of stereo in one image. (The eye position is effectively a

disparity, (16] rigid translation of the two images wi-ch respect to
one another, and defines a continuous mapping of

A parallel, "cooperative" computation model points in one image to points in the other.) The
for human stereo vision is proposed. This feature region surrounding the corresponding; point in the
matching method uses two constraints to match second image is then divided into three pools --

random-dot stereograms. The features that are two larger convergent and divergent regions
matched are the dots themselves. The constraints (towards and away from the "nose", resipectively)
are: uniqueness, which requires that every feature and a smaller null-vergence region centered on the
have a unique disparity (a consequence of imaged predicted match location. The pools together span
points on three dimensional surfaces having unique a region of twice the width of the central- positive
depths); and continuity, which requires that region of the convolution mask. Zero-crossing from
disparity varies smoothly almost everywhere (except pools in the second image can match the one from
at relatively rare occlusion boundaries). These the first image only if they result from
constraints are applied locally over several convolutions of the same size mask, have the same

iterations with an algorithm very much like sign, and have approximately the same orientation.
relaxation-labeling. Multiple disparity assign- If a unique rvatch is found (i.e., only one of the
ments of points inhibit one-another, and local pools has a zero-crossing satisfying the above
collections of similar disparities support one- criteria), the match is accepted as valid. If two
another. Although this algorithm successfully or three candidate matches are found, they are
fused random-dot stereograms, the authors rejected saved for future disambiguation. Once all matches
it as a model of human stereopsis and proposed a have been found (ambiguous or not), the ambiguous
new model described below, ones are resolved by searching through the

neighborhoods of points to determine the dominant
(2) A computatisnal. theory of human stereo disparity (convergent, divergent, or null). This

vision, [2] is the familiar continuity constraint.
A computer implementation of a theory

of human stereo vision, (17] It may be the case that the disparity of a
Aspects of a theory of human stereo region is greater than the range handled by the

vision, [1] matcher. This is detected from the percentage of
unmatched zero-crossings. Marr and Poggio showed

Matchinlg of features occurs in four that the probability of a zero-crossin-, having at
independent channels tuned to different spatial least one candidate match in this situation is
frequencies. The matches found in the lower about 0.7. If the disparity is within the range of
frequency channels establish a rough correspondence the matcher, however, the probability is much
for the higher frequency channels, thereby reducing higher.
the number of false matches.

The lower frequency matching channels are used
In the original theory, the features that were to guide the "eyes" to bring the higher frequency

proposed were zero-crossings of an image first low- channels into range. The possibility of using
pass filtered and then convolved with bar masks of other sources of information to guide the eye
four different sizes and different orientations, movement (in particular, texture contours) was
with a cross section that was a difference of mentioned by Grimson [1].
Gaussia- functions with space constants in the
ratio of 1:1.75. The zero-crossings after a second
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SRI International with consistent data when posaible. This strategy
a void* a common problem wiý.h least squaesa and

(1) Parametric correspondence and chamfer similar methods -- a few roas errors, or even a
matching: two new techniques for image single one, can lead to very bad solations. In
matching, (181 practice, RANSAC can be used as a method for

selecting and verifying a set of points that can be
A method for matching imagea to a three- confidently fit to a model with a conventional

dimensional symbolic reference map is presented, method.
The reference map includes point landmarks,
represented with thtee-dimensional coordinates; (4) Disparity analysis of images, [7]
linear landmarks, represented as curve fragments The Image Correspondence Problem, [8]
with lists of three-dimensional coordinates; and
volumetric structures, represented as wire-frame Points are matched in two images that differ
models. A predicted image is generated from an because of normal stereo, camera motion, or object
expected viewpoint by projecting three-dimensional motion. The Moravec operator is used to select
coordinates onto image coordinates, suppressing point features in both images. An initial
hidden lines. The predicted image is matched to collection of possible matches is established by
image features, and the error is used to adjust the linking each point in the first image with possible
viewpoint approximation. The matching is done by matching points in the second image. (A point in
"chamfering." The image feature array is first the second image is considered a possible match if
transformed into an array of numbers representing it is in a square area centered on the position of
the distance to the nearest feature point. The the point in the first image.) Each point from the
similarity measure is then computed by summing the firse, image is considered an object that is to be
distance array values at the predicted feature classified according to its disparity, and each of
locations. its possible matches establishes a label denoting

one of several possible classifications. Each
(2)' The SRI roed expert: image-to-database object also has a special label denoting "no-

correspondence, (19] match." An initial confidence for each disparity
label is determined based on the mean-square-

The problem of matching an image to a database difference of small regions surrounding the
is studied. The images may be vary foc several possible matching points. The estimates are
reasons: lifferent camera paramrters, lighting iteratively improved with a relaxation-labeling
conditions, cloud cover, etc. The method that is algorithm that uses the continuity constraint.
presented begins with an estimate of the camera Support for each label of a particular object is
parameters, including estimates of uncertainties, calculated from the neighboring objects. If
It refines the estimated correspondence by locating relatively many nearby objects have similar labels
landmarks in the image and comparing their image with high confidence, the label is strongly
locations to their predicted locations. The supported an4 its confidence increases. If no
uncertainties of the camera parameter estimates are labels are strongly supported, the confidence of
modeled as a joint normal distribution. This model the "no-match" label increases. After a few
implies elliptical uncertainty regions In the iterations (aboa:t 8) the confidence estimates
image. The location of one feature constrains the converge to unique disparity classifications for
uncertainty of others to relative uncertainty each point. (Convergence is not guaranteed
regions (These are also ellipses, but are usually theoretically, but is observed experimentally).
significantly smaller than the unconstrained
regions). Two kinds of matches between landmarks
and image features are used: point-to-point and
point-on-.a-line. The point-to-point matches yield REFERENCES
more information for refining the camera
parameters, but the point-on-a-line matches are
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GEOMETRIC CONSTRAINTS FOl INTERPRETING IMAGES
or

COMMON STRUCTURAL ELEMENTS:
ORTHOGONAL TRIUIEDRAL VERTICES

Sidney Liebes, Jr.

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

Abstract

Whereas the goal of symbolic description is generally explicit
A simple analytical procddure is introduced for utilising a in single image processing, it has often not been so in stereo
ubiquitous engineering ard architura! otructural subelement to image processing. It is to be expected that a genaral purpose
facilitate automatically cuing, monescopically inferring surface truly powerful stereo image processing system should be capable
structuiv and orientation, and resohing stereo corrcpondences: of delivering not only an accurate and complete depth map, but
orthogonal trihedral vertices, or OTVs. 0O'Vs occur in profusion also a quantitative tymbolic description of the imaged scene. The
indoors and out. They are identifiable, and are a rich source of processes of a) resolving stereo correspondences, b) arriving at
information regarding relative surface conformation and orien- geometric descriptions of ranged surfaces, c) generating volume
tation Practical cons.dcrations often constrain OTVs to be ver- descriptions of inmaged objects, d) inferring the geometry of por-
tically aligned. General obligue perspective properties of OTVs tions of structures visible in only a single member of the stereo
are examined. The e.ipecially important case of nadir-viewing pair, e) cuing on special features, and !') generally describing the
aerial btereophotograir metry is developed in detail. An object,- content of the imaged scene all can be facilitated by utilizing
space vertex labcling convention incorporates ver'ex type and world model information relevant to the environment in question.
crientation. A set of image space junction signature rules based The development of a robust and accurate stereo ranging system
upon the object space invariance of OTV edge vanishiag points and a powerful general purpose quantitative symbolic description
enables unambiguous vertex label assignment for interior and ex- capability might be well go hand-in-hand.
terior OTVs. An independent application -f the labeling scheme
to both members al a stereo pair, taken aý arbitrarily wide con- Inference plays an important part in human visual percep-vergence angle, identically labels corre-ponding juntions. An il- of our surroundings influencesperceptual processes, Consider a recent experience of the writer.
lustrative example is presented. Algorithmic implementation has While driving out of the univer.ity campus in the dusk xnc, in
not yet been undertaken. drizzle .n( ovening, a figure suddenly looming, forward and to

t:'e left, was perceived as a bicyclist approaching on collision
course from a range of about 50 feet. The "bicyclist" turned

1. Introduction out be a smudge on the windshield, abruptly illuminated by the
swinging head lights of a car 100 yards ahead. The apparition
was processed reflexively, and conservatively, for a fraction of a

A basic goal of autcmated image interpretation is achieve- second as a bicyclist because, presumably, a) it was superposed
men'. of a symbolic description of the imaged scene. The rela- on a small campus side street from which bicyclists frequently
tively limited potential for extracting quantitative geometric emerge, b) it subtended roughly the proper angular sie, c) being
descriptions from single images is vasdly expanded for stereo stationary in the field of view it was "on collision course", andimages. Whereas the present work was motivated by problems d) it was a likely time for a bicyclist to be on that road. This is
in stereo proee.ising, it will be seen to have appicability to single a manifestation of the Hlutncr's Principal, namely, to "shoot at
image interpretation as well. anything that moves" [Binford 811. The conclusion happens to

It has been the traditional goal of automated stereo process- have been erroneous, but it was a conservative and proper one
ing systems to attain an accurate and detailed depth map. rhe under the circumstances. Though the above incident. was clearly
central stereo problem is that of tstablishing correspondences not processed in stereo, it is an example of the human system
between points in stereo image pairs associated with common invoking an elaborate inferential mechanism, doing the best it
object space points in the original scene. Area cross-corrclation could with the contextbrionstiaints, world mdel inforiation and
,eciliqums 1I lannah 7,4, Kelly 77, Panton 781 have worked satisfac- the limited quality input available to it.
torily for smoothly undulating relicf, but are unsuitable where It seems reasonable to expect that a powerful automated
surface slope or range are discontinuous, iii relatively texture- system f)r gorncratiag symbolic descriptions of stereoscopically
less regions and where interimage surface brightness disparities as well as mionoscopically imaged scenes should iuicorporate
are extreme. An edge-based approach (Arnold 80, Baker 80, capabilities analogous to those listed above. The system should
Grim':on 80, IHenderson 79, Marr 79] complementary to that of be facile at recognizing or inferring the presense of common or
area cross-correlation, olfers advantages for complex structural expecr.ed features, We develop a case in point below.
configurations,
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2. Othogonal Trihledral Vertices in General Perspective we shall use film plane to refer to either the piietidolllin planec of
the true film plane. The point of intersection of' the Camera :.;I

with the film plano is referred to as the(, principal point PP". Thei

We wish to consider an application in the practical context distanice bntween the perspectiv'e center and the principal point
of thte world of engineering and architectural structures. We iR called the eamera consata~ r. 'The point or intersection with)
are interested in c'-ni.ributing to a versatile wide-argll;e stereo the hIlnt plane of a ray exvirended frowj Q IP perspective center in
processing system that can accomplish the processes listed ear- a direction normal to the object planeis desi,,natedo the normal
tier, namely, reeolve stereo correspondenf~es, infer surfaces and paint NIP. We construct a horizon plane through the prii.tipalfIvolumes, infer structure visible in only one gor, and have piint parallel to the, object plan,!. Its intersection with the filin
the rudiments of a capability to report a symcl-~ c description, plane def"Ines the horizon line III_ Note that the product of' thle

*wo kinds of three-dimensional .4tructural featue; ýIements that distance a from toe principial point. to the horizon line and the
aboud in such a world are the eaorners or right parallelepipecds distance b f-:,)ni the prinripal point, to the normial pollý, is equal to
(RPI's) and portions of light c'rcu;AV cylinders. We wish here to c 2 . It will additionally be seen from Figure lb) that the distance
concentrate on the charac'.eristics -' the ubiquitous interior and ý s equal to the product 67c, where (3 is :'ie magnitude of theIexterior corner elenments, of RPPs, wb!eh w~e refer to as orthogonal gradiftnt of tht_ height of the object plane expressed i!' cainera.
iri/.edral vertices, or OTVs. Thiough thet- partirlolar featv-e ele. coordinates. Figure la illusurates the peorspective imiage recorded
menti; are highly specialized., lhý-ir projected i~inagcs exhibit rirh on the film plane. The normial point lies oii anl extension oi a

!,,. t!! five t uctural and otl, itp. t~,aa informa.tuun. We adopt perpendicular fromt the horizon line through the, princui.al point.
tie erintoy i~-& 'Wlt 7jIn eern oojc pc The rerdec is cautioned that within this paper we do net al-

corners as it vertices and their two-dimensional projections as ways take the care that is mnerited to distinguish in our termuinol-
junctions. ogy between object space feat'ures and their 'inages. This is not

entirely a tiivial matter. The writer has msore than once been
HoMZON LNE ML __ ____- L-victim of the sloppy thought that can result from a confusion of

object space and image space constructs. It would be justified,
in -. more careful writing, to lake care to make the distinction,
unless it has been. detersmined that there is no potential for either

Z ~conifusior or error.

!1P - NP
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Figure 1. Perspective camera imaging inclined
plane. (a) Image on pseudohtim p~lane. (b) View HLEW HLSN
perpendicular to carrisra axis and parallel to object
plane.* 0

'i he itr ages that we shall be dp.aling with are assumed to be
produced by central projection ism a planar perspective came-a.
An examination of the properties of a pe!rspective image ol' an U
inclined plane will lead us to useful observations regarding the

orthogonal triples of planes. Figure I scaematically illustratesrjetv prprisoaTs omd yteitretoso

perspective camera photographing An inclinied plane. The view
in:- igure lb is orthogonal to the axis of the camera, and parallel
to the. object 'nlane. The camera is shown recording the it- age on
alforward, or paeudofilm plane PFP, oriented parallel to the true
1ilm plane, and located Lthe same distance in front of the perspec- FigurE 2. Perspective view of seven RPPs. The
five centt, PC ast the true film plane is behind it. The image R1PIs are not identical, but e-Ach is aligned with its
rt-i;orcled on the pseudofilin plane is identical to that formed on faces parallel to the, corrcspondinig faces of the other
the Irue filmn plane, Lut for a rotation of 180 degrees about the RPI's. The three straight lines that intersect to form
camera axir, that passes through the perspective center norsnal the cenntral triangle are horizon lines for hie faces of
to the film plane. TIhe pseudofilni plane offers the perceptual the RFP.
advantage of exhibiting its image "right side up". H~enceforth,_I ~161i~



Figure 2 illustrates a perspective view of seven RPPs. The 3. Detection of OTVs in the General Case
SRPPs are not identical, hut each is aligned with its faces parallel

to corresponding faces of the each of the other RPPs. Corners
corresponding to ýhe central coiner of the central RIP are We have already suggested that an OTV is an example of
circled. The point PP is tht principal point of the fIln plane. nal object that generally presents a challenging wide-angle stereo
Consider for the moment tWe single RPP located inside the correspondence problem since the projection into the two images
central tLangular region. Its fates are labled U, W, and S, for can be quite disparate. The detection of OTVs in a single image
"up", "west", and "south", respectively. No particular absolute is not a totally trivial matter either [Roberts 631, even as a
orientation is implied. The familiar directional associations are geometrical problem, disregarding the realities of dealing with
to facilitate con(eptualizatiolr. The horizon line for the 7ace digitized images of real scenes, wherein one must contend with
labeled U is designated Ill~uJ), Lo iidicate that it is the horizon issues of resolution, noise, shadows, and the like. The problem of
line for both the U face and its paralleh opposing face D, for OTV detection for the case of general oblique perspective projec.
"down", as well. Indeed 111,u.) is the horizon line for the entire tion has not yet been pursued in detail by the writer. We shell
family of ;lanes parallei to tIcse two facc3 of the IHl11. The shortly be imposing practical constraints that will simplify the
horizon hii;,'s for the other fces constitute the remaining sides of problem for a large and important class of cases. Neverthelems,
the central ,riangle. Th'. intersections of the Lhrei horizon lines we reflect briefly on the general case. A necessary conditioi for a
correspond to the vai;ishimw, points for the edges bounding the three-legged image junction to correspond to an OTV is that the
faces of the R.1'. Now, il ji a feature of an OTV, as op;Iosed projections of the legs pass though an acceptable triple ef vanish-
to the case of an arbitrary object space trihiedral vo(rtex, that ing points, appropriately arrayed about the principal point, per
the normal to any r-, e ',''iciated with lhe vertex is parallel to the c)nditions discussed in conjunction with Figures 1 and 2.
the edge d'parting t.e ',!ex, Vt'us there es a coincideatce ,f '[h'ough the condition is not sufficient, it is e.%pected to be highly
norin;d points a,- eouge vanishing points in the perpective plane. indicative. There are constraint conditions on the values that can
It will t'-whir,, Ic apiropriutc for thVe case of RPPs to label the be assumed by the projected internal angles at triple junctions
v':i'shiig '.nih ,f Fhi', ,a.• witli the nanies of the 10I' faces corresponding to OTVs. Though the writer has not yet pursued
whose outward neorniois are dire'-, I towaid Lheiin. Thus, the the point, it is speculated that these are limiting conditions cor-
vimisling poinlts for the nmir,,ials to the Iil'll faces U, W and S responding to those that must be satisfied by the vanishing point
are sabled wit li the names of fhlw .,pposing foces, namely, 1), E relations. When there is coherance of alignment of object space
ai'd N, respectively. The three laces tJ, W and S are cluivalent features over a relatively wide camera window, then vainishing
in the projectioi of T'iguri, Tierrfoie, the interrelationships point locations can be inferred from single or concurrent inter-

.,vin principal point, hiori'Aon lie'; lod vanishing points de- sections of leg extensions, and the vanishing point configuration

Vigiiurl' I apply .q.ially to eaci of these faces. checked. If it is known in advance or presiumed tnat one is deal-

ing with RPPs, then the junction location and the directions of
Lhe film plane projections of the three legs is sufficient to yield
the orientation of the OTV relative to the camera, though of

i'he three horihon planes associated with the faces of the course not the range. Stereo correspondence and triangulation

RPP divide the forward object space into seven zones. The film could establish the latter.

plane is correspondingly divided into seven sectors by the three
intersecting horizon lines. An RPP has been placed in each of the
zones. It will he noted that when an RPP face is translated across Most of the OTVs in a given structure will be aligned with

its respective horizon, the reverse side of the face (geometrically. their edges mutually parallel. In fact it will not bo uncommon
if not physically) becomes potentially visible. If, for example, for assemblies and collections of stuctures to be simi!.drly aligned,
an RPll is translated from beneath the I1Lu,) horizon piane to such as, for example, in the case of buildings in a city block.
entirely above it, then the D face becomes visible. An inspection External factors can mediate absolute alignment of OTVs as
of Figure 2 reveals that all faces of a generally oriented RPP may well. Of these, the direction of the gravity ,ector is perhaps the
be made visible by translational displacement, without rotation. single most importr .. determinant in the alignment of cultural
It should be noted in passing, however, that for the case of objects relative to the Earth. This is of course especially the

symmetrical angular a.ignment, where each of the OTV edges case for architectural structures. Tnrogighout such structures
is equaliy inclined relative to the camera axis, these edges will right angles and OTVs abouiid. Exterior OTVs are seen, for
be inclined at an angle of approximately 54.7 degrees to the example, at intersections of walls and roof. of concrete buildings,
forward projection of the axis. Any departure from symmetrical at doorwayis, windows, etc. They are founld in structui I interiors
alignment will force at leai•t one of the vanishing points to move at the corners of rooms, doors, windows and the like, as well as
to an even greater inclination to the axis. Thus, a camera with on their contents, such as innumerable small items, machinery,
a 110 degree field of view would be required in order to image cabinets, shelves and desks. Most of these OTVs will contain
even the tightest configuration of all three vanishing points. A vertical edges, and often they are mutually azimuthally aligned

90 diegree field of view would be required to capture even two as well. Walls are generally vertictl, aud thus too the edges

of the vanishing points under the most favorable conditions of where they intersect. Roofs are most generally composed rif
alignment, corresponding to the third vanishing poir.t being at p!..nar sections, the surfaces largely being either horizontal or
infinity. A conventuonal camera can not tl. ,refore '.,e expected to symmetricaily configured shedding slopes the perimeiters of which

capture inor2 than a single vanishing po I in any given image. are horizontal.
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4. Nadir-Viewing Aerial Stereophotogrammetry SECTOR I
A

The most c,..mmon application of stereo processing is in
aerial stereophotogramnmetry. The nominal situation involves SECTOR 2
acquisition of a pair or photographs taken by a nadir (vertically A
downward) directed camera at stations horizontally displaced

from one another by a substantial fraction of the height of the E
camera above the terrain. Such wide-angle stereo favors ac-

curacy, wh'ie at the same time complicating the determination
of stereo correspondences within highly convoluted or complex

structures. Because of the importance of nadir viewing aerial C F NP ATH

stereophotograminetry, we now direct our ,ttention to this spe-
cial case. We will concern ourselves with structures containing
vertical and horizontal edges, many or which meet to form ver-
tically ,ligned OTVs. We shall assume for the purpose of the

presentation that the camera is pointed directly downward. In 0
practise, the depart,'re from perfect nadir alignment will require ry

a slight generalization of the implementation. Thus, the camera C
axis will be parallel !o the gravity vector and to the vertical SECTOR 4

edge., of structures. This is a degenerate case of the general
oblique configuration illustrated in Figure 2, in that a vanishing
voirnt.coincides with the principal point. Horizontal surfaces will c
be parallel to the film plane. This makes the configuration an SECTOR 3
especially simple one to deal with. The coincidence of the nadir
vanishing point with the principal point drives the remaining pair Figure 3. Nadir view of four gravity-aligned wire
of OTV edge vanishing points to infinite distance in mutually model RPPs. The horizon lines have been labeled
orthogonal directions relative to the principal point on the finm with relative compass directions. The epipolar line

plane, through the nadir point, corresponds to a projection of

It will help in the following discussion for the unfamiliar the llight path. The wire models are uned to generate
image plane junction signatures for the OTVs.

reader to be alerted the utility of epipolar lines. Consider a
pair of stereo cameras located in known relative positions and
orientations. Any plane containing the perspective centers of mutually coincident at NP. The lines shown intersecting at the
both cameras is called an ep.polar plane. The intersections of nadir point, are the horizon lines for the vertical faces of the
an epipolar plane with the two film planes are called epipolar model. They are at right angles to one another for this special
lines. Each object space point has associated with it then an case. Each of the four wire models has been placed in a separate
epipolar plane and, therefore, a pair of epipolar lines. It follows one of the zones created by the horizon planes, after the fashion
that corresponding points in a pair of stereo images must lie upon of the general oblique case depicted in Figure 2. As per the dis-
corresponding epipolar lines. This is clearly a powerful constraint cussion of the general case, the potential visibility of the sides,
in searching for corresponding stereo image points, vertices and edgus of a solid RPP figure filling any one of the

We wish now to consider the projective characteristics of wire models is invariant under translation within any given zone.

iadir-viewed vertically aiigned exterior and interior OTVs. We The flight line, which generates the intercamera baseline, extends

will develop a set of visibility rules, or junc.ion signatures, that from left to right.

will characterize thc appearance of the individ tal OTVs. Given It will be recalled that the sector demarcation lines in Figure
a junction configuration corresponding to an arbitrarily oriented 2 were horizon lines. Horizon lines on the film plane correspond
OTV in oee image, the rules will enable the quantitative deter- to object-space horizon planes and, therefore, to no particular
mination of the appearance of the corresponding junction in direction at all in obje.t space. At the risk of some confusion
the other image, as a furicion of position along the associated (regarding implicat~ons for the general oblique case), it vwill be a
epipolar line. The development of the rules will be facilitated by convenience in the nadir case to consider a dual interpretation for
considering the array of RPP wire models illustrated in Figure 3. the horizon lines on the film plane. We will consider them also

The perspective in this figure is vastly exaggerated relative ton the to represent projections of object-space lines that pass though a
typical high altitude situation. This is evident from the fact that projection of the nadir point, perpendicular to the nad'r direc-

the ratio of object space height of a vertical edge, such as that tion toward the horizontal vanishing pointi. The rays formed
corri'sponding to (C,C'), to tme height of the camera above its by breaking the lines at the nadir point correspond to the out-

base C' is equal to the imago; space ratio (C,C')/(C,NP). Thus, ward surface normals for the vertical faces of the corresponding
the camera is in this example not much more than twice tl.e solid. We label the rays with relative (not necessarily geographic)
heigh'i of the structure. I lie wire figures will serve as gererators compass directions N, W, S and E. The E direction is defined
for the junction signatures of solid OTVs. The wire models may to be that of the first leg encountered rotating counterclock-
be considered to rest upon the nc.,inal ground plane, in a .,nm- wise, looking downward, from the rightward direction along an
men state of rotational alignment about the vertical. The. nadir the epipolar line, labeled in this illustration &x the flight path
poini, horizontal surface nornial point and principal point are projected through the nadir point. It is tempting to call the
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sectors into which tile horiv, on lines partition the film plane in The signatures for a RPP solid may be generated from the
the nadir case "quadrants". However, when the caimera is not wire models of Figure 3 by imagining the wire model edges to
directed precisely downward, thp horizon lines will not intersect correspond to the edges of a RII' solid. The signatures for the
at right angles on the film planc, as we have observed in Figure 2. junctions associated with each of the solid vertices is a obtained
Thus, we retain the sector terminology. We number the sectors by masking the signatures for the wire model vertices accord-
counterclockwise in the order 1, 2, 3 and 4, with sector 1 cor- ing to the visibility of the associated edges, that is according
responding to the region between the E and N legs of the n1; to whether or not they are self obscured. A solid junction sig-

rose. Figure 3 indicates a labeling for the wire model vertices, nature will consist of the list of the names of the object space
The four upper vertices are labeled A, B, C and D; the four lower directions associated with the outward pointing visible legs in
ones A', B', C' and D'. Vertex A' is directly beneath A, and so th6 projection. flhe signature associated with a solid vertex will
forth. The labeling assignments must be made in the relative be invariant under vertex translation througl:out any given one
positions indicated with respect to the vanishing point compass of the four object space zones into which space is partitioned
rose. by thle two vertical horizon planes. Abrupt changes of signa-

FRure can, however, occur upon translation of a vertex across a
NWSEUO NWSEUD horizon plane. Thus, it is necessary to indicate a separate set

A XX X .' XX of signatures for each of the four zones within which the OTV
s XX X B XX X
c X x x C x X x can reside, or correspondingly for each of the four sectors into
D xx x D XX X which its projected junction can fall. Consider, for example, the

NWSEUD NWSEUD wire model image in sector 1 of lFigure 3 to correspond t a solid.

A' XX X A' Solid vertex A is assigned junction signature WS, compared to
8' XXX B' X X the corresponding wire model junction signature WSD, since for
C0 x XX C, xx the solid the edge directed toward the nadir point is invisible.01 XX X 0' X X

Vertex 13 is assigned junction signature SED, the same as that
for the wire model, since all edges of this vertex are visible. The

up (U) HOLE WEST (W) HOLE junction signatures associated with RPPs situated in other zones

NWSEUU NWSEUD ar., developed in like fashion to that indicated here for sector
A XX X A 1. The set of sector-1 junction signatures associated with thi
B XX 5 X X
c x x C x x exterior OTVs of a zone-i solid is indicated in the upper right.
0 XX D of Fi'ure 4. Each signature is seen to be unique. Appendix

NWSEUO NWSEUO A lists, ii condensed form, the complete set of junction sigma-
A'( XX X A'( ) tures associated with salid exterior OTVs occurring in each of
5' 5' XXX the four possible 'ones. The junction assignments are organized
C' C, X X
0' D' in accordance with the sectors within which they fall. Since the

signature of a solid exterior vertex of particular orientation can

SOUTH (S) HOLE The following holes only change when tie vertex is is translated across a horizon
not visible unless plane, the vertex label is completely and uniquely characterizedNWSEUD penetrating, in which by a) the sector within which it is appears, and b) its junction
p event they are

S equivalent to signature.
C XX opposing holes:o X Xo Finally, we wish to consider reentrant, or interior OTVs,

NORTH (N) such as would be encountered, for example, in images of roof
NWSEUO EAST (E)

A'( XX X DOWN (0) depressions, windows, doors and the like. We will refer to these
B' as interior OTVs. Their signatures can be generated by a con-
C. Xx sidering the images of rectangular holes in planar solid surfaces.
rD' XX X It is again convenient to refer t. the wire models of Figure
Figure 4. The set of sector I junction signatures 3. Consider now the wire model in zone 1 to be the junction-

for -'ire model, and for interior and exterior OTVs. signature generator for the vertices associated with a rectangular
hole in the U, or top, side of a horizontal surface of a solid.

We now introduce a junction.signature- astignment for the Reference to Figure 3 indicates that an interior OTV at vertex
OTV projections on the filmn plane. Time scheme we employ location A will have junction signature WSD, identical to that
assigns to each junction the directions of the vanishing points for the wire model. We assign this vertex the lab'el UA. The ver-
associated with each of the visible outward-bound edges or the tex at B, labeled UB, will have junction signature SE, compared
object space OTV. For the case of the ,ire model, the assignment to SED for the wire model. Vertex A' will have signature WSU,
is invariant under translation of nmodel relative to camera, or if the hole is shallow enough for the vertex to be visible. A WSU
vice versa, throughout the entire regiop of object space in front junction signature can be generated by holes in any of the three
of the. camera. Consider for example wire model vertex A. It sides. Furthermore, it is impossibli from a consideration of the
has associated with it edges directed W, S and D. Each of the directions of the legs alone to determine whether the hole is blind
edges is visible. Thus, we say that junction corresponding to or is clear through to the opposing side. This vertex type cannot

the wire model vertex A has signature WSD. In similar fashion be uniquely associated with a hole on any particular face. We
we assign to wire model vertex D', for example, the junction will label it X' when it is later recognizied in an image. The fact
signature NWU, and so forth for the remainder of the j inctions. that its visibility is indeterminate, the signature will be enclosed
The signatures for the eight wire model junctions are indicated in parentheses. This is the only solid vertex label, among both
in the upper left of Figure 4. The eight junction signatures are interior and exterior OTVs, that has mnultiple junction entries
seen to be unique. under the present scheme. It speaks more to the nomenclature,
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however, than to the geometry, since all of these indistinguish. is the same for all pairs of cameras thea, might record the scene.
able vertices have identically directed edges in object space. The The assignment is dependent upon toe object suace direction
signatures for the junctions situated in other sectors are devel- of the Intercamera baseline which, irturn, defines the family of
oped in like fashion to that indicated here for sector 1. The set epipolar planes. The direction in srtace of the baseline, and the
of junction signatures for sector 1 interior OTVs is presented in stereo sen.e in which it is viewed, ;nfiuences assignment of sones
the lower portion of Figure 4. The comp!ete list of interior OTV and sectors, and the labels of varishing points and junctions for
junction signatures for all sectors is given, in condensed form, in the members of a stereo pair of 'mages. The labeling assignment
Appendix A. is stereo-pair specific. The imaercent orientation information is

Though both the sector and visible-edge sigmnature assign- relative to the stereo camera qystem.
ments may differ in stereo images junction pairs colrespolnding The search for gravity alignei OTVs in nadir imagery Isto the same object space oTV, the labeling assignment, which more straightforward tha,j that described for the the general
is determined by the joint values of sector number and signa- oblique case. It is a fe',.ture of planar perspective projection
ture assignment, will be identical, This wili be true for the that the projection of a planar object space figure aligned
general oblique case as well as for the nadir ease that we have parallel to the plane of projection is but a rescaled version
concenrratcd on. This is the basis for the utility of the scheme of an orthographic T,.rojection of the given figure. Thus, in
for facilitating resolution of stereo corrspondences. Application nadir photography, contour lines and horizontal surfaces are res-
of the labeling scheeme to corresponding stereo junctions yields ca'ad orthographic projections. Horizontal surfaces of differing
idortical label assignments regardless of the sihe of the conver- heights will experience relative displacement on the image plane.
gence angle. Additionally, the absolute oricntation of the OTV Horizontal angles are invariant under the projection. Nadir
is established by the inference of the directions of the vanishing aligned OTVs wil! have two horizontal and one vertical edge.
points. Though the labeling assignment will be identical for both Either two or three of the legs will be visible on project'on. If
members of any given stereo pair, regardless of relative camera Three legs ai.- visible, then the horizontal pair will project as a
orientation and position, this does not imply that the asnignment right angle and the vertical leg will project as an edge aligned

N

SECTOR I SECTOR 2

A 

AUA U

a UA C A

/ V

__.. .. _ FLIGHT PATH

NPLEFT

Figure 5. Stereo image pair of "architectural"
complex, aciuired by nadir viewing cameras. The
left image is in sector 1 and the right image is in
sector 2. The 0TV labtls have been assigned by an
appiication of the junction signature tables developed.
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wit h the nadir point. If only two edges are visible, then they [Kelly "71 Kelly, R., P. McConnell, S. Mildenborger, "The
will project either as a right angle cr as one edge aligned with Gestalt Photomnpping System," J. of Photogrammetric
the nadir point and a second edge generally in some other direc- Engineering and Remote Sensing, 1977, 47:1407-1417.
tion, though parallel with that of other liktaligned OTVs, if
equivalent legs of the latter are visible. The three-legged OTV [Marr 791 Marr, D., and T. Poggio, "A Theory of Human Stereo
junction appears to be relatively the most unambiguous indicator Vision," Proc. R. Soc. Land., 1979, B 204:301:328.
of an OTV. Local collections of image lines s.ssociated with a
common triple of appropriately arrayed vauishing points would [Panton 781 Panton, D. J., "A Flexible Approach to Digital
appear to suggest presense of OTVs. Degenervies arise along St-ireo Mapping," Photogrammetric Engineering and Re-
horizon lines, with a double d.generacy occurring at the nadir mote Sensing, 1978, 44:1499.
poiht. T-juntions, oblique and orthogonal, can suggest painted
surfaces, obscuration of features, and the like, as well as a [Roberts 631 L. G. Roberts, "Machine perception of Three-
degenerate OTV. A myriad of factors can complicate the dotec- Dimensional solids," Technical Report No. 815, Lincoln
tion of OTVs in real imagery, such as signal to noise ratio, resolu- Laboratory, M.I.T. 1963; also in Optical and Electro-
tion, shadow, painted markings, alignment degeneracy, and the Optical Information Processing, Tippett, J. T. et aI
like. (eds.), MIT Press, Cambridge, Mass., 19Qr, pp. 159-197.

An illustrative application of the OTV typing scheme is
depicted in Figure 5. The figure schematically depicts a pair of iWaltz 721 Waltz,D., "Generating Semantic Descriptions from

nadir-acquired aerial stereo images of a gravity-aligned "archi- Drawings of Scenes with Shadows," MIT-Al Tech. Rept.

tectural" structural complex. Epipolar lines run left-right. The AI-TR-271, 1972; see also, "Understanding Line Draw-
OTVs are all commonly aligaied in azimuth in the figure. Our ings of Scenes with Shadows," The Psychology of Com-

convention for labeling the compass directions orients E in the puter Perception,, P. H. Winston, (ed.), McGrawHill,
direction to the upper right and N in the direction to the upper 1975.

left in the figure. The scheme places the all the OTVs of the Appendix A
left image into sector 1, and all those in the right image into
sector 2. The sector- fpecific junction signature rulhs, given in Condensed Summary of Nadir-Viewed Gravity-Aligned OTVs
the Appendix A have been used to associate object apace labels
with the vertices, It will be noted that the corresponding vertices The following is a condensed summary of the solid interior
in the two images have been identically labeled, and exterior signatures for all sectors in the case of nadir-viewed

gravity aligned OTVs. The four-fold rotational symmetry en-
This research was supported by the Autonomous Terminal ables the condensed form. The diagonal numbers are sector

Homing Program of ARPA under subcontract C10305 to SRI, numbers. To the right and below each sector number are the
International, and by the Image Understanding Program of associated vanishing point directions and vertex label, respce-
ARPA under ARPA contract MDA903-80-C-0102 and subcontract tively.
ItQSOC253OR to Lockheed Missiles and Space. SOLO UP HOLE (U) Following holesI

not visible unless
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A Procedure for Camera Calibration with Image Sequences

t Kenneth L. Clarkson

Artificial Intelligence Laboratory, Computer Science Department

Stanford University, Stanford, CA 94305

Abstract
A procedure for calibration of the stereo camera camera 1 to camera 2, and from camera 2 to V. (See

transform is described which uses a variable projection Figure 1) These are just 1/, c, and V - c, reepectively.
minimization algorithm, applied to an error function Therefore, V x (V - c) is perpendicular to c. Thus if we
whose dependence on the five camera model parameters know R, and have vectors a parallel to y, 6 pa'allel to
is separable into linear and non-linear components. R(Y - c), we have a X Rrb perpendicular to c. This is
The result is a non-linear minimization over three vari- true for all object points y, and the image point data
ables rather than five. The procedure has been imple- (together with camera focal lengths) give a set of vec-
mented in MACLISP, with good preliminary results. tors a1 , and bi corresponding to some yi. These allow

us to estimate the location c of camera 2 as the vector

Introduction minimizing
This paper describes a partial solution to the fol- E(c. (ai X R b,))2 (1)

lowing problem: Images from two cameras are given,
with matchings between points in each image which, for m the number of image point matchings. Any
are thought to correspond to the same point in 3-space, vector parallel to c will do, s6 we will fix the third
with no furthor informatikn such as the location of component o& c lo 1. As a result we have a linear least
known object points. The problem is to use the match- squares problem mn c, given the rotation matrix R of
ings to find the location and orientation of one camera the orientation of camera 2. So we can estimate R by
with respect to the other. The solution described here finding a value of it minimizing the error in the fit.
uses geometricai constrainto from the matchings to find A well known algorithm (among numerical analysts)
a least squares error function of the five parameters in- for solving separable leapt squares problems of this
volved. This error function is in effect linear in the kind is the variable projection methodl[1)21. This
location parameters, so that best least squares values method uses the Levenberg-Marquardt iteration (which
for 1hote parameters can be obtained for given orien- has the Gauss-Newton iteration as a special case) for
tation parameters. The error of this fit is then mini- the solution of the non-linear part, which involves the
mised over the orientation. The result is a non-linear
minimization in three variables rather than five, an im-
provement over previous methods. (cf. [5]) Note that
the images are arbitrary, in the sense that they can / \
be from two cameras at one time, or from one moving / \YCcamera, or from one fixed camera on a moving object. ,/

Derivation of the Procedure.I
More precisely, let camera I be at the origin, look-

ing along the z axis, and let camera 2 be at point c;
looking in such a direction that a point y it seen by e (a-rar
camera 2 at R(y - c), whert R is a rotation (hence 'am era I
orthotormal) matrix. Now we know that the following
vectors are co-planar: that from camera 1 to V, from tigture 1. Ca tmera views ofobjeci at,
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linearization of the problem at each iteration and lob then find the least squares solution of
least squares solution of the linearization. Thus each
iteration involves two least squares problems, which()
can both be solved by using the numerically stable (") 0)
technique of Householder transformations to find the weetelnt ftecreto etr5scnrle
generalized inverses of the matrices involved. The fol- b h aqad aaee ,woevlemyvr
lowving development of thj method as applied to camera byteMrudtaamer',woevleayay
calibration follows the discussion in 12). with the iterations. The correction vector 6 is then

Let ~ =a~ R()rh, whre , ad ~areu~t subtracted from P for a new estimate. When v' -_0
this is the Gauss-Newton method. i-indlng the least

vectors pointed from camera 1 and camera 2 to V, as sq aefoai nfr() ca ed n sn h oeasily obtained from the image point matchings. The sqaesotinfr()cnbdneuigheae
dependence of R on the three orientation parameters orhgnldcm sion etdasfr()(p We ;Aeed to com~pute the Jacobian of 1(D). The
P =#,P 2 , #3) is explicitly indicated. (The nature of clm~o hsm~l r
this dependence is discu3sed below.) Let 4'(f) be the
m X 2 matrix whose A'h row is the r. and 1- components O(( 2 (p)Vp) =_ NO) V£ P Q0) Dv(.) ()of di, and let y(§~) be the rnlength coih.iii vector whose 0,8j)-Q~~. 5
A'h component is the x component of di. Then the -

problem of minimizing (1) is equivalent to minimising From (3) we know that q2 Bj"'() = 0, so tlkat

Ily(p) - $£6)Z112 (2) 002()()

over x E R 2, for given P. This can be done in the fol--
lowing way: compute the "orthogonal decomposition' and hence approximately
of 0, i.e., find an m X m matrix Q(P) such that

where U is a right triangular 2 X 2 matrix, and Q is where *0+ ==U- 1 Q1 , the *generalized inverse of 0,
as above. This simplifi~ation is due to KaufmanJ3].orthonormal. Partition Q into two sub-matrices Q, It remains to determine the derivatives DO(#l)/Gij

and Q2, with the first 2 rows of Q forming Q, and and Oy(/3)/O P. Since 0 and V are obtained from the
the remaining m - 2 rows forming Q2. Since Q is vectors di, we need to find
ofthonormal, w*e know that IIQxI) = jjx~j for ms-vecto.,

ZsoOd, Oa, X R(P)b,

Il ,,12 = IIpi Ofl,

- ~ 001c:)~2
- OR

= 11Q1Y - UZ11' + 11Q2Y 112  There are nitany ways to define a i otation matrix using
three parameters: we will factor R~ into, a oduct of

Since IIQ011II doesn't depend on z, 0~e optimal x for rotations R1, R2, and R3 about the tp; y, &--' x axes,,
fixed jO is x = U-1(f)Q1 (fi)y(fi), and we want to rotating #I, P2 , and p3 radians, respectively. These

4minimize 11f (,6)112, where! fis the (m -2)-vector valued matrices have a simp!.e form, for example

function Q2W)(Ph ) (1 0 0
We can minimize the norm of f using the Levenbierl- R, 6Co# -* inpI

Marquardt algorithm, which iteratively reines#p as fol- ( P1ki# C00
lows: for the cuirrent value of P, compute the Jacobian snP o~
of f for fl, the (m - 2) X 3 matrix (hj}j, where and OR/Op1  (ORfOp 1)R2Rs, and so on.

Of,
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*1
EVALUATION AND REAL-TIME IMPLEMENTATION

OF IMAGE UNDERSTANDING ALGOR7THMS

Bruce J. Schachter
Glenn E. Tisdale

Westinghouse Electric Corp., Systems Development Jivision
Baltimore, Maryland 21203

Ir
ABSTRACT e Ccnstruction of a knowledge base to

improve object labeling;
In the third phase of its association with

the University of Maryland in the DARPA Image * Development of optical flow techniques.
Understanding Program, Westinghouse is investi-
gating performance problems with image These problem areas are considered crucial to
segmencation algorithms, application of a the success of future image recognition programs
knowledge base to image recognition, and the use which support reconnaissance ant w;eapon delivery
of optical flow techniques. These choices are operations. The reasons for this assessment will
based upon an anticipated demand for improved be discussed below.
recognition performance for weapon delivery and
reconnaissance systems. Thic aper discusses At the current state of the art, a variety
current efforts in each of these areas, as well of segmentation algorithms are available which
as the preparation of a comprehensive data base perform target extraction quite well with
and the conduction of meaningful perfomance "clean" imagery, but which deteriorate rapidly
tests, with the appearance of noise, clutter, or partial

target obscuration. This is a severe bottleneck
in the image recognition procesi. Fortunately,

1. Introduction some promising nev segmentation algorithms are
beginning to appear. Several candidate algor-

rhe Westinghouse Systems Development Division ithras wxll be selected from those developed at
is now entering the third phase of its associa- the University of Maryland, and other IU
tion with the University of Maryland Comp'nter programs. One goal of the current effort is the
Vision Laboratory in the DARPA Image Understanding development of meaningful statistical tests to
Program. The Maryland program director is Prof. evaluate their performance. With this objective
Azriel Rosenfeld. The Army program monitor is in mind, a data base has been compiled which
Dr. George Jones of the Night Vision and Electro- reflects complex reconnaissance and weapon
Optical Laboratory, Ft. Jelvoir. delivery scenarios.

Highlights of the first phase of the The belief that a knowledge base may be
Westinghouse program (1976-78) were the demon- useful in image recoginition is based upon
straticn of a CCD histogranmner-sorter which the inability of machines to deal with some

incorporated a speci.al-purpose Westinghouse CCD complex scenes which humans can interpret by
chip; and the preliminary design of an entire using memory, context, and reasoning. This idea
automatic cueing system, using CCD architecture, has been around for years, but with very little
in a 3" x 3" x 6" volume (1). During the second successful implementation. New optical flow
phase (1978-80) attention was directed toward techniques offer some promise of success in
the hardware implementation of relaxation several areas. They can potentially assist in
algorithms (2,3,4). A non-linear prefilter the (passive) determination of range to a target,
based upon this work has been demonstrated, and the detection of target motion, and the evalua-
will be incorporated into the AUTO-Q processor tion of sensor line of sight changes. The
(5), as a replacement for conventional averaging following parigraphs describe the work which has
filters. Additional effort in this phase was been initiated in each of the above areas, the
directed toward the use of array processorb for selection of a "'ealiEtic" data base, and test
algorithm tests where large data bases were plans.
involved (4). The current phase of the program
began in late 1980. It will expand earlier 2. Image Segmentatioai
efforts in the evaluation and real-time imple-
mentation of image understanding algorithms. Image segmentati.n is a process of parti-
The specific areas for this effort are: tioning an imag3 into regions--each having

different properties. The class of images
* Investigation of performance problems within this project's scope are FLIR target/

with image segmentation algorithms; background scenes. Thus, segmentation can be

178

iV,



regarded as a process of separating targets from is to use synthetically generated images for
backtround clutter, which the ground truth is known by construction.

4 One such image has been included in our data
The standard method of segmenting an image base. A third approach is to feed the output of

is by gray level thresholding. Here the classes each of the segmentors into a common classifier.
correspond to gray level ranges, e.g. "light- The classification accuracy is then assumed to
hot" and "dark-cool". Since these ranges are give an indication of segmentatien accuracy.
not known in advance, they must be determined by
examining the gray level histogram and looking The task of comparing a number of segments-
for peaks (one dimensional clusters), and tion algorithms is by no means clear-cut. The
choosing thresholds (one dimensional decision performance of each algorithm is related to the
surfaces) that separate the peaks. type of noise cleaning done before or after each

stage of its operation. Furthermore, each
A number of investigators have suggested algorithm has one or more parameters which must

that multidimensional feature space should also be adjusted. The optimal performance of an
be useful for segmenting complex gray scale algorithm can only be achieved by fine-tuning
images. A variety of features way be defined these parameters with respect to the class of
over a neighborhood set about a pixel, e.g. images under consideration. The robustness of
mean, median, variance, commona'ity, total var- this tuning operation is an extremely important
iation (6). This approach could be employed consideration in a military context, but also
when a single feature, such as gray level, is one which is difficult to evaluate.
not adequate for segmentation 1 ecause the given
image contains a number of textured regions Most segmentation algorithms contain a
whose gray level ranges overlap, number of processing steps which rukt in sequence.

It may be possible to separate the stages of
Initial work at Westinghouse has indicated operation of the various algorithms and combine

that thresholding by cluster detection is not them in different permutations. Presumably, by
adequate for separating targets from background. careful analysis, one -ould take the best parts
Gray level target and background clusters are of the best of tbc algorithms and assemble them
often not separable, i.e. their probability into a new algorithm. This idea will be inves-
densities overlap. Likewise, the response of tVgated furtbar as our study progresses.
local operators tends to be rather variable, not
yielding well defined clusters. The basic 3. Conszruet:ion of a Knowledge Base
weakness of segmentation schemes which use only
local feature values is that they attempt to The AI approach to scene analysis involves
clicssify image parts without regard to their the construction 3f a knowledge base and the
relative positions in the image. It should not exloitation of co-straints implied therein.
surprise us that any approach which does not Certain knowledge about the physical world can
take spatial contiguity fully into account fails always be used. To quote Marr (13):
much of the time.

(Cl) "A given point on a physical surface
The segmentation algorithms investigated in has a unique position in space at any

our study are those that make use not only of point in time.
similariLy but also of proximity. The candidate
algorithms for our study include, but are not (C2) Matter is cohesive; it is separated
limited to, the following: into objects; and the surfaces of

objects are generally smooth compared
* Superslice (7) with their distance fron the viewer."
* Pyramid spot detector (8)
* Pyramid linking (9) These constraints apply to location on a physical
* Two-label relaxation (10,11) surface. One approach to using such constraints
* Spoke detector/segmentor (12) is to develcp a primitive scene description and

then resort to a convergence of evidence. This
A data base of 50 FLIR imageo (128 x 128) has primitive description can take the form of lines,
been assembled from Army, Navy, Air Fcrce and edges, corners, blobs (obtained from segments-
Westinghouse sources. Several images from this tion), tilt of the ground plane and location of
data base are shown in Figure 1. Each of the the horizon.
candidate algorithms will be tested on the first
ten images. Those that perforia well will then Higher level information can be incorporated
be tested on the remainder oc the data base. at a later stage. Higher level knowledge deals

with the particular goals of the analysis and
This brings up the question of how to domain of the data. For example, tanks some-

evaluate the performance of an algorithn. times leave warm dust trails or tread tracks.
Several approaches are being considered for use Trucks and jeeps often travel over roads. Tar-
alone or in combination. One approach is to gets tend to cluster into groups. An object
have a human "hand segment" the images. The floating above the grouil is more likely to be a
resulting binary image plane then becomes an helicopter thau, a tank.
estimate of the ground truth. Another approach
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More information is contained in a sequence 8. M. Shneier, Using pyramids to define local
of images than in a single snapshot. The motion thresholds for blob detection, in Proc. of
of features derived from the perspective pro- the Image Understanding Workshop, (Los
jection of a scene onto a view window is called Angeles, Nov. 7-8, 1979), pp. 31-35.
the scene's optical flow. The optical flow
results from a combination of the view window's 9. A. Rosenfeld, Some uses of pyramids in image
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initial model for his 3-D environment. Other and segmentation of blobs in infrared
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(a)

•II

(b)

Figure 1. Part of Test Data Base, Photographs are
(.) simple Lest image, and FLIR scenes from
(b) Navy, (c) Army, and (d) Air Force sources.
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Figure 2. Optical Flow Scene Produced by Westi-nghouse AkUrO-Q Wgital Image Processor (14).
The input to the device was f rom a TV camera which was rotated between
successive frames. The optical flow image consists of 9 windows, whcuse corners
are marked. Each window cor'.ains a single flow vector.
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A GENERAL PURPOSE VLSI CHIP FOR COMPUTER VISION
WITH FAULT-TOLERANT HARDWARE

Michael R. Lowry and Allan Miller

Artificial Intelligence Laboratory
SManford University, Stanford, Ca. 94305 USA

Ab~raetof a sequence of Bluem atd non-linear operations, even
This artiale describes a VLSI NMOS chip suitable for a Bin'd system a special purpose chi issiable

for parallel implementation of computer vision &IgO. for oi'Jy part of a total system. F or developmneuntt and
rithms. The chip coatains a two dimensional array of testing of new algorithms general purpose hardware is
processors, each connected to its four neighbors. Each needod.
proceiAor curr~antly has 32 bits of internal storage in e fem
three shift registers, and can do nrbitrary boolean func-
tions as well as serial bit arithmetic. Figure I abowe Ol'e data path of one processor.

Oar objective is to make a vision processor witb It is important teo note that the processor is serial;
one processor for each pixel. This will require a vry in other words, each line in the diagram represents a
high density VLSI implementation, filling an entire single connection. The R register is 16 bits, and the
wafer. We will need fault-tolerant hardware to deal DI and D2 registers aye each 8 bits. MtTXI and MUX2
with the fabrication errors present in such largi cir- select the inputs to the adder. The adder inputs can
cuits. We plan to do thais by incorporating redunlant Le selected from R~ shift output, DI shift output, D2
links in the processor interconnections and routing the shift output, zero, one, and the iatched adder output
Inuks arouud faulty processors. of any of the cell's four neighbors. Thbe output selector

Current work focuses on testing a prototype chip etteshrinusoRD ad2.Teupt
with our processor, redesigning thq chip for a more aak, Aor is constructed in auch a way that one of theIcompact and regular layout, and designing the redun- three registers can be. loaded from the adder ouitput,dant lirk interconnections and hardware adppart fo and the other two registers are loaded from their ownpicture size arrays of processorR. shift outputs. In this way, Dl and D2 can be summed

into R without losing the contents of either D register.
The control path of the processor is quite simple.

Many computer vision algorithms consist of There are twelve externally generated microcodie bits.
repeating the same operation over each local region of Six of the bits P'31ect the adder inputs throut.k MUXI
an image. This can take excessive amounts of time or, a and MUX2. Two of the bits r-onteol the output selec-
serial machine, even for non-production research pur- tor: either all three registers are loaded from their shift
poses. Current vision algorithms have reached a limit outputs or one of the three registers is loaded from the
due to the processing power of the computers on which adder output and the other two are !oaded, from their
they are running. Further improvements in computer shift outputs. Thtee of the bits independently enable
'vision will rteed a fast, general purpoze array processor. shifting of R, Dl, and D2. The final microcchie bit

To achieve jTrrater speed, we are developing a causes the shift enable U,.. be loaded from the ad~der out-
high densi.ty two-dimensional array of general purpose put. When the shift enable is a zero, register shi~fting is
processors. All processors execute the same instruc- Jisabled regardless of the state of tbe microcode bits.
tion sequlence, controlled by a common microcode bus, This effectively disables the processor.
but indlivdual processors can be selectavely enabled by . qea ls
data-deapendent condit'sona. This idea is not new, bat wpm agemls
past work has been limited to small arrays because of Althou~h the proc-sssvir design is quite, simre, it
low-density and high-cost ardware 11,21 allows several fairly important 'vigiun nlgorithms to be

In a sense, we are .rying to achieve the same done relativeity quickly due to its parallel implemionta-
c~ipabifity as human visual processing of doing all local tion of local onerations.
operations in parallel i3j. Our approach differs come-Tocnlv iimgwthafxdasesor

"ehatfro othr crren wok i VLS copute viion the greyscale value of each pixel in the D1 register of
t41 in that we are developing geL~eral purpose hardware,
as opposed to hatdware for a particular operation such one processor and use the method of aiding multiples

as rnvoutin. incemus imge rocesin c-)nsstv of a spatially shifted image to accurmulate. the result inas ~nvoutiu. inc mut imge rocssig c3nssts the R registers of the processors. The shifted image is
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put inVt, tht D2 registea, br selecting the proper neigh Current fabrication techniques can achieve a 1
bor as eoie adder inpot and zero as anotb,.r 0dder in-
put, then doing eight shifts while saving the result in micron X, giving us a factor of 2.3 linearly, or 6.25
D2. This shift operation can be repeated any number in area. The microcode lines take up approximately

ofea properly shifted one third of the area of our processor, so shwaing them
of times in any directoin to produce compe ted between processors gives another factor of 1.2 in area.imab e in D2. One convolution step is t Ren completed The memory in the cell can probably be reduced to
by adding the appropriate a ultiple of D2 to R. Fa r ex- at least three fourths of its current size (uving stand-
first D2 is added to R, then R is arithmetically shifted ard memory cell designs). Since the memory currently
firsttwothen D2 is added to RhnRi arithaetically 5id con-takes about one third of the cell, this gives another
right two bits, then D2 is added to R in. This con-much
volutii, n step is then repoated for the entire fixed mask. blank area in the intercennectieu of the processor ele-

Usiog the shift ensyble, it is also relatively simple blnk an the irconncou of te rocesso
to multiply DI by D2 and save the result in R. R ments, and the processor could probably be reduced to
is cleared, then DI i% repeatedly added to R, arith- two thirds of its current size. Since the proces ur takes
metically ,'hifting R right one bit between additions. up one third of the cell area, a cleaner, more regular
However, just before each add operation, the next bit processor design would give yet another factor ef about
in L2 is loaded into the shift enable. This aas the effect 1.13 in area. Taken together, these factors mean thatof only adding snifted versions of DI to R where the a 512 by 512 procees'r array is within about a factor of
corresponl ding bit in ersions aone. The toRwresul the 11 in area or 3.3 in linear dimension of being feasible.corresponding bit in D2 its aone. The result is the We expect to be able to make a 128 by 128 ar'ray in the
desired multiplication, yielding the cross correlati-n of We epttoe able to m ak e ar2ay as farai
an image stored in DI with the image stored in D2. near future, and move toward larger arrays as fabrica-

Thresholding a picture is quite easy, since it can The biggest problem with making s wafer-si.ed
be done by tubtracting the threshold from the data chip as we plan to doe is overcoming the pr-blem ef low
using two's complement arithmetic. The final carry y;eld. The largest comioerciolly available chip today
can be loaded into the shift enable and any threshold- is the Motorola M6g000, which is about 6 mm by 7dependent operation can then be done. i h oooaM80,wihi bu mbToependet deretioncal z ero crosinsear mm. Siace we plan on making a chip with 100 timesTo find directional zero crossings, each processor the area, and the standard yield model decreases ex-
retriev-s the sign bit of the data in its neighbor in the thw area, an tue sy e m o cess er-d~esired direction Processors with positive data are PC nentialty with area, we must use a processor inter-enabled byrectloadn g thoessors c lth pofithe signbit connect scheme that can tolerate errors in chip fabrics-
then enabled by loading the complement of the sign bit tion. jSpecifically, the model incorporates an 'error
into the shift enable (complementing a bit is done by densty" that is censtant over the wafer. If p is the
addinig one to it after clearing the carry). Each enabled probability of finding no errors in one unit area, then

processo- then loads its neighbor's sign bit into the shift hr obability of finding no errors in an area oseA

enable. Tae result is that only processors that were Ithe Irea din r rors in i are of sie A

originally next to zero crossings with negative slopes
are enabled (the positive-slope zero crossin' can be simply the old yield raised to the 99th pKwer. If the old
found by operating in the opposite direction, yield was 10% the new yield will be 10-09.] We plan

By using various parts of the D registers for man- to deal with fabrication errors by incorporating extra
tissas and exponents, it is possible to simulate limited interprocessor connections in the chip. A test run on
floating-point operations, although it is clear to 'us that the chip will pinlpa.nt bad processors, then in actual
eight bits of data severely limits both the range and use some of the extra Interconne.,tions will be removed,
precision of these numbers. leaving a network of good processors.

Although we have not yet investigated further al- Redundant element methods were used in early
gorithms to the same detail, it seems clear that relaxa- 4K RAMs, where each half of the circuit would be
tion methods such as finite element analysis for solv- tested independently and chips with one bad memory
ing 2-dimensional differential equations are particu'arly array would be sold as 2K RAMs. More sophisticated
well-suited for local processing. In addition, we are cur- methods are being uz.,d today in larger rmemory chips
rently investigating a halftoning algorithm that spreads to delete single rows and columns of bit-storage arrays
errors due to thresholding in a uniform manner rather [61.
than a biased fashion as done in current algorithms 15]. We foresee three major issues iit making a working
We feel that these diverse applications of our processor fault-tokrant design.
are a good indication of its generality. We will need to know more aboul the statisticn

of chip errors in order to have a reasonable model on
Teebkaoleeal eoadderatims which to base yield calculationM and interconnection

Figure 2 shows the processor layout. Our processor schemes. Although some data is available, it is mostlyFigre shws he rocsso laout. Or pocesor statistical in nature and is based on tests of memory
is currently approximately square, measuring 500 X on
a side. Since our test chip was fabricated with a 2.5 arrays. Industrial integrated circuit manufacturers are
micron )X, our test processor is 1.25 mm on a side. reluctant to reveal yield statistics of their fabrication

a512 by 512 array of processors by simply facilities, since their profitt are dependent on these
To make a figures. We plan to design a circuit that can addressreplicating this processoi would require a wafer 64 cm areas on its surface and check for vxious kinds of
on a side. A reasonable design will have to reduce the fabrication defects. In this way, we will have a better
linear dimiension of the processor by 10, or the area by model of faborication errors.

. It will be necessary to have a redundant inter-
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prcesor cominec4tion Scheme. We are currently con- research tool for developing more powerful vision algo-
sdrgeither having eachI processor conufct to alI rithms than current computing facilities aliow. The

eight of its neighbors or having the pro-cestorm arranged system is part~icularly well-suited for algorithms in-
in & triangular array with each processor coi-nected to volving local operations, and can be used to iniple-
six of its usighbors. By studying the fault tolerance ment & large variety of algorithms using a general
of each of these topologies and using the yield data purpose processing element. We are using a fault-
from the tests descrivtd above we will design proces- tolerant processor interconnection scheme to achieve
sor interconnections t'3 give us reasonable yields on the high enough yield for this full-wafer circuit.
water-shied circuits. 'resting the processors also affects
the interconnection scheme since it must be done before Rfrue
any interconnections are changed, but tbo testing itself (1PhlphakLwevliso uin an ry
will rely on the interconnections to pass data on and iphilipsso rks Low-lte ve Grp icsionx~ Pucsing 14,rra
off the wafer. We are also considering having buses prGocesr nnue rpisIn.ePiesn 4
along rows and columns of the water through which 219&M.J.B uanD.M.WtoTecllrlgi
processors can communicate with each other and the (2]s iM. . prc. sr Dumute and D.10ato, The celua logic
outside world. Ths ilsmlf drsigasnl 3] David H. Hubol and Torsten N. Wiesel, Brain
processor for testing purposes, and will also allow rapid mechanisms of rision, Scientific American 241, no. 3,
commnunication between distsait processors. 1Q979

Once we have decided on tb, topology of the inter- [4] S. D. Fouse, G. R. Nudd, and V. S. Wong,
connections, we will need to implement theme intercon- AplctoofLIadVStoigeueradn,nections. We are curre~f - y considering three different Applicato oUf LIanVLtimage understanding Wrso,Api
types of inlierconnections. "Soft* interconnections can 190
be made by adding one miore select input to MUXi 151 Robert W. Floyd and Lou.is Steinberg, An adaptive
and MUX2 and controlling these inputs from a two-bit algorithm for spatial greyscale, Proc. of the Society for
regist.ý: By making certain adder input selections not Information Displey 17, no. 2, 1976.
depend on the registers, these selection registers can be ý6 Tsuneo Mano et. &L., A fault-tolerant 256K RAM
set to a known state after power is applied to the wafer. abricate with molybdenum-po~lysilicon technology,
Te~sting can be done. on all processors and the results IEEE J. Solid-stat Circuits SC-15, no. 5, 1680.
of the testing can thaen be used to load the selection 171 J. Randal Moulic and Walter J. Kleinfelder, Direct
registers. "Firm' inte-v onnectiont can be made using Ipattern generation by laser writing, Proc. 1980
the same techaelocy used in EPROMs, where ivtercon- IEEE International Solid-state Circuits Courerence,
nections can be enabled by storing a charge in the oxide 19W.
layer over the base of a pats trmasistor. This charge can 18] DECsystsm- 10 Hardware Reference Mvaual. Digital
be removed by exposing the wafer Surface to ultraviolet kquipment Corporation, Maynard, Massachusetts,
light, allowing occasional eongusationso then chia * 1978. Also, timing information taken from on-site
*Hard* interconnections cwanbe mae uiir thi !uil n et nL '&-1r tica Itliaoenc

mtllinks (the same techiiology used in PROMS). We tiiA test onte4-a.u~....
metalLaboratory KL-10.

are also inverstigating laser technologies for makina and
breaking links on w:afer surfaces as a final proce~ssing
step 17).

Feritituafto Estimate

The performance improvements our system w~ill
provide wre irpressive. A Digital Equipment KL-i0,
which is a 6000-chip ECL design, can do a 36i-bit ad-
di-tiou in 520 ns if both operands are in the cache [8].,
It we define un 'operation' to be an 8-bit addition.
the KL-10 can do 8.7 million operations per second.
Out preliminary wafer will have 16,384 processors on
it, Po esch proceusot will need to do 530 opeirations per
second to match the KL-10. This repreimints a clock
rate of 4.2 KUls, sinct eah 8-bit addition rs~iires eight,
clock cycles. Aithough timing tests are ctil I in a very
preliminary stage, we expect to be able to clock our
device internaly at close to 10 MHz, resultingi a per-
formaice improvement of at least 2500. Teactual
Apiva. will probably be much larger since our system
wili avoid the overhead of computing addresses.

By makinig &a timage-3sied two-dimensional array
procsome on a singes silicon wat er, vve are building a
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A RESIDUE-EASED IMGE PROCESSOR FOR VLSI IMPLEMENTATION

S.D. Fouse, G.R. Nudd, and G.M. Thorne-Booth

Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265 and

P.A. Nygaard and F.D. Gichard

Caclsbad Research Cen:er, 6155 El Camino Real, Carlsbad, CA 92008

ABSTRACT programmable image understanding system compatible
with commercially available host machines.

This paper describes recent work undertaken The architecture itself uses residue arithmetic (5)
at Httghea Research Laboratories, Malibu, Call- to provide a highly regular and extendable ntruc-
f:rnia, in support of the DARPA Image Under- ture. These issues are of great importance in the
standing (IU) program. The principal goal of emerging VLSI era where design time and the ability
the work is to investigate the application of to amortize the fabrication cost of many processors
VLSI technologies to IU systems and identify are essential elements. The VLSI prczessor now
processor candidates well suited to VLSI imple- under development is configured on a single board
mentation. One candidate that is very well with multiple copies of a single custom-built nMOS
suited to the VLSI technology is a programmable chip. Our estimates indicate that the processor
local-area processor with residue arithmetic will perform between 50% and 75% of the operations
based computations. The design and development for line finding and texture classification.
of this processor, which operates on 5x5 kernel, The modular nature of the machine can provide
are described. Of significant interest is an essentially variable precision as discussed in Sec-
LSI custom circuit that we are developing and tion 3. The single custom-built chip has a com-
which will perform the bulk of the residue computa- plexity equivalent to approximately 6.500 tren-
tions. In addition, an interface that will sistors. However, with decrease in design rules
permit this processor to be controlled by a from the present 5 um to submicron we can antici-
general-purpose host computer (e.g., PDP 11/34) pate building a single chip with some 80,000 tran-
is described. sistors and dcsign the full system atound four

identical chips.

I. INTRODUCTION A sigaificant advantage of our approach is the
compatibility with general purpose host machines,

Our previous work (1.2) in developing image such as the DEC series, which are widely used in

understanding architectures has concentrated on image analysis and understanding. We have there-

the analysis of the processing functions reqiiired fore spent considerable effort in developing a

for special-purpose LSI primitives. We have UNIBUS interface so that the machine can be

developed about 16 fixed and programmable primi- accessed through the host software. With the
tives for real-time operation. addition of the local area logic processor, to be

developed in the next phase, we expect to demon-

The work described here represents a signifi- strate a fully pzogrammable real-time processor.

cant shift in emphasis and an increase in capa-
bility. First, we have undertaken a detailed 2. SYSTEMS ANALYSIS AND DESIGN

design and analysis of a number of complex process- The effective explortation of VLSI technolcgy
ing operations, inclu-diing !ine-fd-V ing (3) nnd
texture analysis (4). This work has been carried in image understanding systeus requires that the

out specifically with LSI and VLSI implementation processors developed be used in as wide a range of

in mind. Uence issues such as chip and function systems as possible. This requires that

partitioning, data flow, local storage, and word- a wide variety of systems be analyzed for the pur-

length are specifically emphasized. The results pose of determining commonality. Our approach has
of the systims analysis and design for these been to select three representative systems to
operations are included in Section 2. From this analyze: a line finder, a texture analyzer, and
work we have been able to configure a fully inte- a segmenter (6). Each system was studied and then
grated real-L'.me p'rocessor for each. a directed graph depicting the data flow was pro-

duced (7). The directed graph had nodes that were
Of twqual importance, and perhaps greater functionally complex, so the next step was to per-

impa,:t to military systems and robotics, we have form a logic design for the systems to determine the
configured, designed, end started to fabricate a complexity of the nodes and of the systems. The
VLSI processor that caa form the basis of a fully logic design was done for the line-finder and the
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texture analyzer oystems. For details of each 3. A RESIDUS-BASED IMAGE PROESSOR
design. Pee JSCIP Report 990 (8). A brief summary
of thm results for each system are premented below. The work described in Section 2 motivated the

design of a low-level processor that could pe:torm
The line-finder system decomposes into four the computationally intensive low-level operations

major function.: edge letection, edsie thinning, for each of the three systems investigued. In
edge linking, and edge tracking. addition to fulfilling the requireeenio of the three

A dsystems, we also wanted to select an architecture
A design warn generated for each of these •hat could be extended to take adv4nrage of the VLSI

functions and Table I presents the number of gates design and processing capabilities that are cur-
each required. Siailarly, the texture analysis rently being developed. The archite:ture we
system decomposed into five major functions: selected is based on the technique of residue
small-window convolution (5.6), small-window arithmetic.
statistical calculation, scaling, large-window
statistical calculation, and linear transformation. 3.1 Processor Deecriptlion
Table 2 presents the gate count for each system.

We implemented our local area p-oceasor in

residue arithmetic to take advantage of modularity,
TABLE 1. GATE COUNT FOR LINE FINDER SYSTEM and hence ease of design, within the VLSI chip and

_...._ __extendabilitv tc. handle arbitrary dynamic range. and
accuracy. The technique relies on the conversion,

EDGE DETECTION 178K prior to computation, of all the data to relatively
prime bases (we chose 31, 29, 23, and 19) and the

THINNING 190 GATES subsequent decoding of the processed data bavk to
binary numbers. If this overhead is accepted then
the arithietic itself im reduced both in complexity

EDGE LINKING 5W0 and in required dynamic range. bhis enables us to
use look up tables, which in our case are program-
sable RAM, te perform the necessary arithmetic.EDGE TRACING 12 MBIT MEMORY Regularity, ease of VLSI design, and function den-

+6K LOGICGATES sity on the chip are aignificont advantages. Thus
- =this approach is ideal for VLSI Implementation.

A block diagram of a general residue processor
TABLE 2. GATE COUNT FOR TEXTURE is shown in Figure 1. Some of the advantages

CLASSIrICATION SYSTEM (e.g., modularity) and disadvantages (encoding.
etc.) of this technique are clearly visible in this

5 LINE KERNEL GENERATION 15K GATES representation. The encoding and decoding, when
compared to a binary processor, are overhead func-
tiuluC and can be the major disadvantage of a residueS x 5 CONVOLUTION 27K GATES/ processor. However. this overhead cost can be

CHANNEL reduced if enough computations can be performed
while in the residue representation, and hence the
encoding and decoding cnn be amoritsed over a large
computation base. The clear advantage of this type
of processor is its natural parallelism. Each par-

NORMALIZATION 1K/CHANNEL allel computation channel is independent, requiring
no communication with its neighbors until the con-
version irom the residue representation to a binary

LARGE WINDOW 8.25K/CHANNEL representation i performed.
STATISTICAL CALCULATION

3.1.1 Kernel Generation and Encoding

TRANSFORM )M INPUT 2.1KM!OUTPUT Typically. the input to an Image processor i a
CHANNELS)___ CHANNEL J string of eight-bit data values generated by a

- asrter scan o' the image. Therefore, we mustinclude in the processor the means for generating

From the results of the directed graph analy- the two-dimensional kernel. This ketnel generation
sis and the logic design, it is obvious that the function is most easily accomplished using a series
function sommon to all three systass and the most of shift registers. For a five-line kernel, focr
complex, when measured by the maber of gates, is shift registers, each one containing as many ele-
the small window (5x5) convolution. This supports ments as there are pixels in a line, are required to
our deciaon to build a programmable 5x5 local-area generate five adjacent lines of video. For our par-
processor as the basic VLSI module. ticular application the shift registers are 8 bits

wide and 512 elements long.
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Figure 1. General Structure For Residue Processor INPUT DATA R

Before the input data can be processed by a ,
residue processor it must be converted from a I
binary representation to a residue representation.
This conversion requires that we calculate

(X mod B1 , X mod B2 , ... , X mod BR), LINE DELAY

where X is the value of the input data and Bi is

the ith base. For our case, since we operate on a
5x5 kernel, we must perform this calculation on the5
input for each of five lines of video and for each
of four processors (equivalent ot the four bases). LINEDELAY
The simplest way to perform this calculation for a
general set of bases is to use read only memnorl.es

eROMs). By connecting the input data to the
a.idress lines of the ROM and looking at the data 6
lýnes of the ROM for the output, a lejk-up function 8

is performed. For our-particular proceusso, whichI NDEAwill support an eight-bit input dynamic range and

bases that can be encoded in five bits or less,
the size of an encoding ROM is 256x5 bits. Fig-
ure 2 shows the block diagram for the kernel gener-
ation and encoding portion of a four-base five-line 8processor. Each of the five ROMa for each base are LINE DELAY-- -

programmed identically. ROM ,

An alternative way to perform these two func-
tions would be to encode before the kernel is
generated. The major drawback of this technique is
that the memory requirements are much greater for
the kernel generation process. For the system we
are currently constructing, each line delay would
need to be 20 bits wide as opposed to eight bits
wide for the method we chose.

3.1.2 A Programmable Residue Computation
LSI Circuit

The actual computations on the image data will
be performed by a custom LSI circuit which is cur-
rently being processed at the Hughes Car)sbad ENCODER
Research Center. The circuit will process a ROMS

Figure 2. Kerrea Generator Encodtoq
for 5x5 Processcr
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5xl kernel and is capable of performing computations This circuit It being fabricated using the
of the form nhOS technology and has been designed to azcept a

10 MHz data rate. Ti achieve this data rate. pipe-
line teckatqutb were used. and the resulting latency
for this circuit in se-en clock cycles. The circuit

y (J willt be paCkaged in a 28-pin dual in-line package.
i-I Figure 5 is a photograph of the layout of the chip,

which wil' be tvallable for testing in April 1981,where y is the output value, Xj is tihe five

elements in the kernel, and fj reiresents polyno- To utilize this circuit (with a 5xIl kernel) in
mial functions of a singla variable. a 5x5 local area processot, multiple copies of the

circuit need to be used as well as adlitional logic
A functional block diagram of the circuit is tit codmbine the outputs of the individual circuits.

shown In Figure 3. The word size for this is five For each base, five of these circuits are uted, one
bits, which limits the prime bases used to a value for each line of Lhe kernel. In addition, four
of 32 or less. The circuit is designed to accept a 1,024x5-bit ROMe are uKed to sum the outputs of the
five-bit input word which is clocked into a five- five circuits. ROMO aro used instead of ;idders
element shift regiater. The contents of each becnusc the additions must be done modula:ly. Fig-
register element is then shifted to the next regis- ure 6 shows the block diagram of the processor,
ter. The five-bit data in each of the shift regis- including the encoding and computation portions.
tar elements is used to address a look-up table,
which is a 32x5 random access memry (RAM). This 3.i.3 Dec
look-up operation performs ;a unary operation such
as m multiplication by a constant or a squaring The last portion of the processor is concerned
operation. The outputs of the five RAMs are then with the conversion from the residue representation
scumed modularly to produce a five-bit output, the to a binary representation. This conversion could
base of the modular additton being programable by certainly be done the same way as the encoding, by
external control of the circuit. Since the look- table look-up, but there is a severe problem with
up tables that perform the unary operation are that approach. For our particular system, to con-
composed of RAis, the circuit can be programmed vect four 5-bit values, the decoder would require a
for many different comsi)utatiors, such as different memory 1 million elements wide with each element.
weights for a convolution or different powers of being 17 bits deep. This table is certainly attain-
a number for a statistical cos.culation. able but the approach is not extendable. If an

extra base Is required, so that fivt 5-bit values
need to be converted, the memory requirements

lN o increase to 33 million elements, each being greater
DATA I F3then 20 bits deep.

There are two conversion methods that do not
require these large memories. One is based on the

S32, xChinese reminder theorem and the other is based on

Or-- um a mixc4i radix representation. (For a complete die-
5' NA cussion, refer LQ -,f. 9.) This paper will focus

;2 •only on the particular impiemen.:ttons of these
5F-'-- L --- _-techniques and the rationale for selecting one uverS-- -- the o har.

'A.' .• To be able to reasonably discuss either of thw
RA two conversion methods some notation must be Intro-

duced. If B is the base vector whose elements are
o2xb the bases used for the computations,

0,xl.A R-ESIDUt ADDER B - (bi, b2,,..., bk),

R is a scalar whose value is equal to the dynamic
Figure 3. A Functional Block Diagram for range of the processor, which is given by

5xIl Residue Processor Circuit

4
A dotailed schematic of the circuit is shown in

in Figure 4. In addition to having five bits of R- " j b,
input daet and five bits of output data, an addi- 1-1
tional set of data lines is included in this design.
These data lines, which are bi-directional, serve a and X is the value we wish to encode into the
multipurpose role for control and testing. When residue representation, then RX, the vector whose
used as input data lines they can be used to pro- elements are the data values for each of the cow-
gram the base zf the modular addition and to pro- putation channels, is given by
gram any of th;* five look-up tables. 'then used as
output data lines they can read the look-up tables RX - (rxl, rx 2, ... , rx.)
to verify the operation of the circuit.
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where processing systems, the output dynavic range and
the input dynamic range are _-qual and thus the

rxt - X MOD bj, i-1 to k. adder complerity can be relatively small.

The Lhinetie remainder conversion process in based The second conversion scheme considered is
on the following property. If based on the mixed radix method, but is aimalified

by the ract that the output dynamic range ca.- be
kX - (rx1, r=2, rx, rx) approximately eight bits. The method can be

e:.plained by imagining an ite'rative process where
then at every iteration the smallest base is eliminated

by dividing the value by that base. Dividing
-X 1r r x 0 ,0 + (OO,rx3.rx MO) R essentially reduces the dynaahic range of the value
RX 1 r 1 r 2', 3 OD 4 and thus eliminate& the nead for the extra base.

Of course, since we are limited to a strictly inte-
Figure 7 shows a system wht.ch performs this ger sy~te, we must make sure that the value is

conversion and which requires only two blocks of evenily divisible by the smallest base. This can be
memory 1,024 elements wide antd two adders. The done by rounding up or down so that the olcment in
adders need only be as large as the asccuracy the residue vector for that bass in zero. Figure 8
required of the system. Typically, for Image shows an architecture for a four-base system that
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Figure 7. Chinese Remainder Theorem Residue
Decoder (4 Base System, 5 Bits/Base)

Figure 5. Photograph of CRC 181 Layout

102 x- 02

RO O

INPUT INPUT

6jiNb'1 NU BASE 3 BASE 2

-- O BASE I
11 1,C IFigure 8. Mixed Radix Based nvsidue Decoder4~ - ~(4 7!ase System, 5 Bits/Base)

performs this mixed r~dix like con~version. Atthe
_L..~ ~ j1 bottom level of this tree structure the fourth base

------------------------------------- is eliminated. At the next highest level of the
tree the third base is eliminated. Finally we are

tam left with two base values tlat can be decoded with
S a stimple look-up table. Thi" system has been simu-

L~.FThULL~ ~lated, and the computer programs eXist that can
generate the contents of the Rt)Ns for this conver-
%ton process for an arbitrary set of bases.

"-006~ We chose the mixed-radix-basud conversion
process to Ihe implemented for our processor for twe

Figure 6. Structure of 5x5 Processor reasons. First, the method doev oot require any
Utilizing 5xl Processor Circuits logic othcr than ROMa. This tends to make it more

flexible and reliable. Secoizd, the method appears
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to be easily extended to more bases, by simply ,090 6

extending the decoding tree. Extending the Chliuese-
remainder-.based process wotild require either larger PORT 0C

ROMe or more adders, either way being less attrac-
Live way than the mixed-radix-typt conversion.

8255
3,1.4 Programming and Control PORT I

A major problem in tht- fabricat ion of th1H
processor is gaining access to each of the 20 CS
custom residue chips for the purpose of programming
the look-up tables. Ela.'h chip has three address PORT 2
lines to select one of five RAM structures, a read/ 18

write line, the five bi-directional programmiiug
data lines, and a control line for the data line 1OT
drivers. These 10 control lines must be brought
out for each of tht. 20U custom chipe for a total of
200 control lines fot the purpose of programming. 825
However, by buss~tig lines where possible and by PORT I
using a peripheral interface chip, the Intel 8255,
the nUaber of lines that are actually brought out
of the procestor is reduced to 16. C

Figure 9 shows the structure that will be used PORT2 9R8
to program the processor. The three address lines
and the bus driver control lines are brought from P .C
each custom chip to an 8255. One 8255 is able to
control five of the custom chips, si4 ce the 8255
has 24 lines available through three 8-bit ports.
Thus iour 8255s are required to control all 20 of 8255
the custom chips. In addition, the five program P0R, 1 CRC
data lines and the read/write line are bussed 1
between each of the chips and these six lines are
brought to a fifth 8255. The eight input daie
lines of the 8255s are bussed as well as the two-
bit port select address lines. Finally, we bring PORT 2 CRC
out each of the 5 chip select lines to a binary
decoder, allowing selection of a single 8255 using

three control lnes. 8PORT0

To use this structure to program c given RAv| 181
element in the procesa.wr requires the following 8256
steps. Initially, the ftfth 8255 is selected and the PORT 1 --.
data to be programmed are written to the port ton-
tamning the five program data lines. Next, the aC
8255 that controls the chip that the desired RAN
element is on is selected, and the code to select
the desired RAM structure is written to the proper PORT2
port. Next, the address of the desired RAM element

is provided on the iknput data line of the processor,
and then the address is shifted so that it is PORTO
addreasing the proper RAM atrmcture. Finally, the
write data line is strobed to complete the program-
ming sequence. This sequence can be accomplished
by three 16 'jit data transfers. For a processor
using 31, 29, 23. and 19 as Lhe modular bases, a
total of 2,550 RAN elements need to be programmed, CHIP
Thus, if three word transfers are required for each BINARY SELECT
RAM element, a total of 7,650 word transfers are DECODER 0:2
required to completely program the processor. "--O ADDRESS

The processor that involves all of the func-

tions described above ie currencly being fabricated. DATA AO, AI

The majority of the electronics will be on a single BITS
wirewrap board, but the line delays %ill be in a 0:7
separate box. A picture illustrating the progress Figure 9. Structure for Programming and Control
on the wiring of the board is shown in Figure 10. of Residue Processor
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M10 1007-2 includes four delay lines, probably 512 elements

long, 25 registers for g;enerating the Wx5 window,
25 RAM structures, 24 wodular adders, and some

kde'ay atages. In addition, programming, control,
ant' testing of this cf.rcutit must be considered. A
grtat deal about these issues can be learned by
using the processor currently being fabricated.

Both the current chip, the 5x1, and the next
chip, the 5x5, have been sized to set a quantita-
tive measure of their complexity. The CRC 181 has

a device count of approximately 6,300, of which the
RAM portions of the circuit take up 4,500 devices.
For the 5,5 custom circuit the device count will
increase to 80,000. One of the reavons for the
high device count is the addition of the line
delays, which account for 50,000 devices (for
static memory cells). The total number of devices

for rtAdom logic is about 7,000, which is low con-
sidering thast the circuit will have a throughput of
500 million operations per succnd.

As stated, going to a 5xS circuit will greatly
reduce the extra circuitry required to construct a
5x5 processor. Figure 12 shows a block diagram of
a system utilizing a 5x5 cir'zuit. With the VLSI
circuit the package count for the data flow portion
of the processor will be only 14. This is compared
to a package count in excess of one hundred for the
current design. The power ano size will be greatly
reduced, theteby permitting the processor and the
DEC UNIBUS interface to be put on a single card.

3.1.6 Functional Capabilities

Figure 10. Photograph of Processor
Figt raph ofarod Although the primary motivation of developing
Wirewrap Board this processor was that the systems we investigated

of a Residue required 5x5 convolutions, the processor i:; capable
3 5 k__. A ta sionh of performing a wider range of computations. The

reason for this flexibility is that we used a look
Even though the custom chip is performing the up table to perform a unary operation, and the

bulk of the computations, some extra circuitry is table is completely programmableP The gentrai form

still required. Most of the extra circuitry is of the computation that can be performed by the

necessary because we are using a custom circuit processor is

based on a 5xi kernel. The next step then, once
this processor ic tested and demonstrated, is to 25

develop a 5x5 residue custom circuit and to fabri- y f(x
cate a processor that would utilize these VLSI A-= i
circuits. 

i-I

Ideally, the 5;:5 circuit should include the where y ts the output, the xi represents the 25 ele-

circuitry for generating the five-line kernel. ments in the 5x5 kernel, and fi represents polyno-

This would mean that there would be five bits for mial functions of a single variable. Each f, is

irput and five bits for output. If the kernel gen- completely arbitrary and need not have any relation

eration circuitry is Verformed off of the chip, to the other fi" By selecting subsets of the fi to

25 lines for input wouid be required, or at least a be idtntical to zero, we can program the processor

high-speed multiplexer would need to be on thýe chip. to perform point transforms, one-dimensional trans-

On the other hand, if a simple line delay is used forms o" any size up to 5xl, and two-dimensional

to generate the five-line kernel, the circuit would transforms of any size up to 5x5. Table 3 lists

be too inflexible, since it may not be sjited to some of the functions that can be performed by this

certain soplications. This can be avoided by aug- processor.
menting the shift register with logic to control 4. UNIRUS INTERFACE
the cliocking. By multiple clocking the shift regis- e

ters con be made to delay any length up to the The processor, as mentioned before, is designed

maximum length. In other words, we would b" con- to accept data at 100 nsec intervals. the reason

structLing an elastic delay line. for this high-speed design is to allow real-time
stand-alone operation. This means, however, that

Figure 11 shows a block diagram for the data when tWe processor is used as a peripheral devAce

flow of a 5x5 residue circuit. This circuit attached to a general purpose computer, the data
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transfez will be limited by the memory cycle of the 1069 10

genev'l-purpose computer and not by the processorU peed. This means, that to get optimal use of the
processor, we need the fastest t)pe of transfer
available between the processor and the main memory,
where the data to be processed will reside. The
direct memory access (DNA) type of transfer is the
fastest type of transfer that a general-purpose 11/34
computer can support, Aince it does not rLquire CPu
procesoor intervention. For DEC UNIBUS applica-
tions, the fastest data rate one could expect is
approximately I MHr.

The type of interface we design should then be
able to provide a DKA transfer capability for both
the prograiming data and the image data. For either
type of transfer, it is essential that the interface
be controlled to select the memory location from

which the data are to be transferred and to select MEMORY

the number of words to transfer. For program data
transfers, the interface will only be required to
transfer one way at any time. The transfer will be
to the procensor while in a program mode and from
the processor while in a test mode. For image data
transfers the interface sust be able to transfer --
data both ways, ft.;r input and output. The simplest
alternative *o handle this bi-directional transfer UNISUS
of data (trom a hardware point of view) is to trans- I ENTSOM

far the output data to the same memory location the DE RFACE PPUSORSSAUR
input data came from, i.e., write the output image DOtB

over the input image.

DEC devices exist that can provide the DMA
transfer capability as well as provide several con-
trol lines to the peripheral device to allow multi-
ple transfer modes. One such device is the DEC
DRIIB UNIEUS parallel interface. Our plan is to
use this device to provide the DMA capability and
to design a custom interface to permit the specific
transfer modes. The arrangement suggested is ahown
in Figure 13.

The custom interface will need to interpret Figure 13. Comercial/Custom
the coutrol lines from the DRIlB and decide if the UNIBUS-Processor Interface
transfer is for program data or image data. If it
is program data, the interface will simply pass the
data to the 16 program data lines. If it is an
image data transfer, then the custom interface is
%ore complex. Since it is a 16-bit transfer, the
date. will contain two pixels. So following the
transfer, the interface must first pass one byte to
the input data lines and then the next byte. Simul-
taneously, the interface mast load the first output
image data into one byte of the 16-bit output data build a fully aoftware-programable low-level pro-
register and then the next output data into thm cessor for 5x5 operations. The circuitry deecribed
other byte of that register. Finally, the output relies on a special-purpose VLSI chip with 6.500
data register's contents are transferred to the aomponents. Using this, and the interface designed
DRi1B which writes it to main memory. L preliminary to hook the processor to coiercial general-purpose
schematic of a 4ystem that can perform these types machines, most low-level arithmetic operations over
of transfers in shown in Figure 14. a 5x5 kernel can be performed. This work will con-

tinue and the full system will be demonstrated
5. SUMMARY AND FUTURE W•1K using our in-house PD? 11/34. We then anticipate

making this available to interested government
We have described the work undertaken to design researchers in this field.

VLSI processors for these widely used systems:
line-finding, texture classification, and segmenta- Our future plans include the investigation and
tion. From this work, we believe we can, if possible development of a single ulzra-high-density
required, build the necessary hardware. However, of circuit to include the full processor and the
greater impact, we have identified and started to development of a compatible logic processor.
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Image Understanding Research at CMU

Takeo Kanade and Raj Reddy

Computer Science Department
Camegie.Mellon University

Pittsburgh, PA 15213

Shape from Texture
Image Understandino Research at CMU rrijnly concerns three Kender finished his Ph.D theis on Shape-from.Texture [15. Not

research areas: theory for understanding 3.dimensioaial shapes; oniy did the research produce marny interesting results on texture

integrated system demonstration for photo interpretation analytVs, but the Shape-from.Texture provides a computational

(database and interactive/automatic image interpretation parn-igm. In the image forming procesw, surfaces are

techniques); and special devices and computer systems for image perspectively projected onto two-dimensional regions of the

understanding. In this report we will present the CMU views and imaging retina, The images of the texture constituents w.ich

our recent representative progress tar the first two areas. define r- Aurface are distorted by local surface orientation, reirtve

suriacG distence, and the characteristics of the imaging device.

The task of ,he vin'Jl o'ocessor is to deconvolute these effects.

Theory for Shape Understanding Recovery of the scene characteristics depends on simplifying

assumptions about the physical world. These are the notions of

Images convey the shape information in a very complicated texture regularity, and of surface opacity ano smoothness. The

manner. Many factors are interwoven into the imaging process: general paradigm exploits each of these assumptions in the

surface property, surface orieitAtion, texture, class of objects, etc. creation and refinement of the analytic framework.

They indivi.dually provide constraints on the shapes that the image

depicts. Hiutoric&3ty, most vision programs have used twene The fundamental concaptuul and representational tool is the

constraints in a vague, unformalized manner. normalized tqxtural property map (NTPM). hItuitively, this map

retatas a given two-dimensional image texel (texture element) to

At GMU we believe that it iS an important challenge in image the small class of three-dimensional constitunis which may have

ulwiderstanding to formulate theories of shape understanding from been its source in the scene. More precisely, it is a way of

images: what constraints are provided by iindividuai properties deprojecting the effects that surface orientation has on primitive

which are observable in thp image, and how they can be textural properties such as slope in the image, length of major axis

aggregated into consistent shape interpretation. We have been of elongation, etc. The map summarizes tho answers to the

actively investigating geometrical aspects of image constraints for question, "what would the textura' property (e.g., real slope, real

extracting shape from static, monocular images: length, etc.) had to have been in the scene in order to observe the

"* Shape recovery from line drawings (3] [4] given textural property in the image?".

"* Shrape-from-Texture paradigm 151
"" Mapping image properties into s-iape constraints 12] The NTPMs for more than one primitive texels are combined or

intersected tn 'irive a specific surface orientation. Here,
We will review our recent progress in the lest two topics, additional heuribiics about the physical voorld ara invoked.

together with the research on 3-D shape sensing and analysis. Typically, they are the uontinuity of constituents (regularity), the

continuity of local surface orientations (smoothness), and

repetition of identical texel constituents (structural texture),

Figure I is an oxample of recovering the surface orientation of a
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Figure 1 ,Recovery of a surface orientation of a building face

buid)n fae frgtn usesigtie image slpsof fxl anbidiang fassumpTion Surfa e oienain isaproi~m atgel A e -o G(0.4v).

that near parallel image lines are parallel in the scene. *Since most images are taken in an environment pervaded by a
force that strongly orients objects with respect to It. crftan

Following are some of the most illustrative results of Kender's heuristics regarding "up", "horizontal", aRnd other gravity.
based ternis make image understanding simpler. For example,

thesis: under perspective, assuming that a certain direction (usually,
the Y direction, through the center of the Image) Is vertlcd-
enables the orientation of the assumed grourvh ýlane to be
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detrmne byusng dagl f651eriCtl exl.Mapping image properties into shape
constraints

rhe Paradirim Annighed to Lericith arid Sgactino
Certain Image properties, such as parallelisms, symmetries, and

*The paradigm is applicabie directly to image texels that have reetdptenpoece orprevn hp rma2
linear measure. Actual line elemnents, or virtual lira. elements rpae atrs rviece o eciig3 hp rma2
(spacings) are analyzed in identical ways. D picture. Kanade and Kender 131 demonstratdd how we can map

* The generail problem of arbitrary line lengthn Is tractable In all those image properties into 3-D shape constraints by assoc~iating
cases unde.r orlhogr~iphy, Uut only under special cases under appropriate assumptions with them and by using appropriate
perspective. The rotational coutpling of 'he gradient space
ensures that the orthographic NTPM has only one fred computational and representational tools,
p~arameter (the Image lengih). H~owever, the perspective NTPM
hlas four: three for position, and rtne for Sk ~ewed Symmettry

* Under orthography, the assumption of equal length in the
scene reduces to the case of the Kanade oriertation hyperbola. On reestaieemles h coep ofsed

e Unoder perspective, the assumption of fttkal s~cene length plus symt:apretyo2.shesiiwictesmerys
the assumption of parallelism in the scent induces a simple smer:apoet f20sae ' hc h ymtyi
graphic construction that directly givas the vanishing line, And found along lines not necessarily perpendicular to the axis 0A

therfor thesuraceorietaton.symmetry, but at a fixed angle to it. Formally, s4cch shapes can be
e Under perspective, the assumption of equal s~coe le ngth pIlus oefined as 2-0 af line transforms of real symmetries. (Figures 2

the image phenomenon of cotinearity create a one-
dimensional. straighitline gradient isoace constraint. (a)(b)(c) show a few examples.) There is a good body of

* The colinear-equal assumptiors gives a unique vanishinig point psychological enroeriments 1121 which suggests that human
that zan be di~itermined exactly by u.3ing a Hougth-like observer'N can perceive surface orientations from figures with this
%ccumuilator method thut generates parc~ilas or hyperbolis in

a trnsfom spce.property. This is probably because such qualitative symmetry in
the ;mage is often due to real symmetry in the scene. Let us
associate the following asaumption with this image pr operty: "A

*The NTPkI of density under orthography is idenitcal to the skewed symmefry depicts a real symmF~ry viewed from some
refiertar'ze map of a Lambertian surface. This gtves strony nnwgiwage

tt.-.%e upport to the popular method 0. okirriog textures ukonve nl.
into snadv- of grLey for scene analysis purpotses.

*Under perspective, the blurring of toxtures is hazardous, ,A, it Is We can map this asý.. ~o into the constraints on surface
crucially dependent an second order distribution statistics. orientation. Let G . (p,q) denote !he gradient of the plane which

1h aaimATidt noiiyadCnoricue the slQ~wed symmetry. &,id a and P denote the 2-0 i

directions of the sliewcd s.;mmiatry's axetL. It can be, shown that

two henmefa (hadig ad ptten) re iteringed.Of te sch skwedsymmetry in the pictlire can be a projection if a

two.textre Lppers mre robut".real symmetry if and only if the gradient is on the hyperbola shown

" Sadngca asobeanlyedunerpespctve Te imlet n igre3, whc sgiven by:
case ofstading (the Labrinsphere) has the same aaAcos(a -,8) + (pcoso + qsIn&a)(pcos13 + qsinfl) - 0
under perspective a% it doe% under orthography.

"* The constraint curves generated by some shp-!'m Kanade 1 4) has shown that this constraint plays Important rolles
occluding -contour methods are identical to both thosip used in
shape-froin-ahading and thooe urad in shape -from-texture. All in perceiving quantitative shapes from line drawings of polyhedra.
three have the same, simple graphic interpretation. This quantitative shape recovery is an essential advance from

fl~~~C t.3jgSD~±she. frerred Rlenresanfalion Hull man-Clowes-Waltz type labeling, which simpl*; could

" T., grdlat saceis k6- ' n tat t i ony hlf spce;the characterize shapes of polyhedra qualitatively (convex or concave

Gaussian sphere is a natural extension with a numbeir cr edges, etc).
preferable properties [Si. However, the surface of a sphere Is
hard to handle in a straightforward way in a planar computer. Affina-Transformafrle Pallernas

"* The Gaussian sphere preserves many of the pleasing
properties of the gradient space. A more general class of image properties that Kanadil and

"* Other representations may be occasionally usotul: the inverted Kender 121 have found is affine-Transfotmable patterns. In texture
gradient space ((1/p,l/q) instead of (p,q)), for example.
Especially intriguing is the problem of how to .iinpiify several analysis we off-in consider small patterns (texel) by whose
half-angle formulae.
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Then we can derive a relationship between the gradients G, an

02of the scene constituents of the texel. This constraint Is

determined solely by the matrix A, which is determined by the

relation between P, and P 2 which is observable in the picture:

without knowing either the original patterns (PI, and W,2) or their

~a) (b)relations~hipa (a and R) in the 3.D space.

S~..isThe constraint3 by mie afft me transformable patterns can~ be

(c)(di) used for shape recovery of an object, like Figure 5, on whose
surface a number of patterns are printed or stamped such an

Figure 2: Skewod symmetry toxtile or wail papers, The assumptions we used for the skewed

A sk~ewedt symmebwty defines two directiojns in the image slaewed-yn~ axi symmetry, the aft ine-transformable patterns, and texture analysis
(a) Ifld sk'eftd-symmetry transverse axis(#8) The skewad-symmetry easjmption can be generalized as: "Propirties observable in the picture am~

~ tht ~ ~e~epnd ntheSCIi16not by accident, but are projections of son~a prete~rred

corresponding 3-D pro pertion." This provicies a useful met*-
heuristic for exploiting image properties: we can call it tIie meta.

Iheuristic of non-accidental image properties. Methods of

aggrega.ting many local constraiits into consistent shapes are

being further studied.

3-D shape sensing and analysis

T1At CMU, optical noncontact ranging devices f.nr medium (50 cm.)

% O and short (5 cm) range are being developed [11. B3oth use analog

\ .. ~,position senser chips to detect the location of an intensity spot

which is projected on the object surface by a light source. Unlike

/ ~ vidicon or CCO array sensors, scanning the field of view is not

necessary. The chip outputs currents which, with a little

Or G'T \computation, tell the location of the spot. This can provide simple,

fast, accurate, noncontact visuai sensing of range information.
Prototype devices were constructed for both medium and

proximity ranging devices. They are being tested presently and

wbill be used mainly for robotic applications. We expect the

purformance of 10,000 points/sec. and 1,000 lin4 resolution, In

Figu re 3; ihe hyperbola determined by a skewed symmetry parallel with the development of ram.,ng devicas, we are

Thie axis Of the hyperbola is the bisector of the obtuse anl mad bya p, developing programs to reliably extract io~cl ývturfaca orientatinna
The asymritols makie the smem angle se thes acute angle made by a endP from range data. Based on the iheoretical results of Kettdc % we

are looking at the Gaussan sphere representation for ~.jc
surface orientations us~ng the sinusoidai mapping of a sphere to a

rie~tttion a texture is defined. Suppose we have ak pair of texel 2-0 plane.
patterns in which one is a 2-D aft me transform of Wte otfio; we call

them a pair of affine -transformable oatterns. Let us ~assume that

"~A pair of attine, transformable patterns in the picture are the

projection of similar patterns in the 3-D space (ia,, they can be

overlapped Ly Gcale change, rotation, and translation)". The

above assumption can be schematized by Figure 4,
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*Terrain Data

Integrated System of oDIMS Digtsl Terrain Data File, 100 m x 100 rn/pixel, I m
Database and Phioto Interpretation resolution in1 altitude

A ~ystem for photo interpretation taska needs mocre than~ simplc M lap Data
limage interpretation techniques. Newly acquired Images have toI

be asimlatd ino te sster, cmpaed wth xising mags ad oDIMS Cultural Feature Data File. approx. 18,000 features
be asimlatd ito he ystm, ompaed ithexitin imgesand(point, linear, area)

mepe, aiid interpreted by vsing the existing relevant information as

knowledge. The extracted information then updates the database. SyblcMpereetto

At CMU, wve are currently developing a demonstration system o We are developing a symbolic representation of map (2D
and 30): interconnection of toads, buildings (shap,KMAPS which inte Oate; Image database, map representation, height), etc.

interactive image n iipulation and display, and automatic Image

analysis 19] (81. Figure 6 shows the present configuration of

MAPS, Maitliln generation and display of
Images

Multi sensor, multi data-type Image Over the past year, we have Implemented a large number of
dakabose ftcilitlos to manipulate, to generate, and to display images using

We currently have muilti-data typ, multi-sensor image database the database. The represenitative capabilities are: (See (81 for

for the Washington D.C. area boundad by <North 350, West 760) details)

and (North 390, West 780>. It includes: flrowse:
This is a very general, flexible multi-window image display

*Sensory Images using a Grinnell color display.

o ;ýirborne monochromatic (8W) 2048x2048 Hand Segmentation:
o Skylab color (COL) 2300x2300 An image can be segmented interactively, and the results are
o airborne color infrared (CIR) 2P'0x2200 stored as part of the image description file.L 0 andat ultspe~raI(MSj 300x400Terrain Data Manipulation and Display:

nigital terrain data can be manipulatw!, and displayed to show
3-D representation, contours and 3-0 features,

-. 111 IIIF141ýLandmark Extraction:
'0004dr 00 w. -'.'The landmark file contains names, &-scriptions and image
ýOr 4,0 4J). ft Nchips of a large number of landmarks within the task ,Ire&.

'q 'aýP .Knuwing grossly the area that a new image covers, a user can

4~v (9 ~quickly locate landmarks in it in order to establish a
'~ correspondence b~etween image and map.

4V)~' Correspondence Coefficients Computation:
This ,rogram computes coefficients of the first, second and

~ 4.~ (ti) 4W? (T' Y 'U~ third order polynomial transforms between map and image.
£ A ~ '~ /~. ~'~ ~ ~ 5f~ ~ ntervisisbility Mlap:

41 ®R~Q ~ j v~ W'~ This is being developed as one of the planned CMU
-~ contributions to the Testbod. Moravec (101 is developing a

~ (~)~ ~ ~) ? $piogr-am which will be able to rapidly generate viaws of three-
dimensional scenes described by large numbers of planar

~. ~'d4~ ~faces. The techniques used can represent the efftect of
___ shadows and produce intervisibility maps as special cases.

(~~)~ 'IHis method relies an a new hidden surface removal algorithm
% ~ -' 'Opt of Fuchs which generates views in linear time. (A somewhat

more expensive view- independent presort must be done Just
~ ~ "~once for the scene.) It generates intermediate images which

- ~contain high resolution views of the scene, but which oratj
indicate which face is visible at each pixel, not Its brightness.

5. Becati"- these face identity pictures consist of large
Ffgure5 A picture of a ball with identical patterns, stamped conti. is regionq with the -ama value they can be
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Krepresented very efficiently In quad (roe rtructures which maily applications the two irv~ges, are already in approximate

recursively gubdividi' along edges. but represent large registration. It can be generalized to deal with arbitrary linear
constant areas aw single nodei. The cost of both computing
and storing the fas.e Identity quad trees grows as 0(rilogn) distot~ion~s of the Image, including rotation.
with the picture resolution (and edge lsngtn), allowing very
high resolutions; the cost of a conventional raster grows An analysis on convergonce suget that conveqNiance Is

quadatiallywit th reslutonobtained if the Initial estimate is within a distance of one half of the

size of thet object. Range of convergence car be expended by
first smoothing the Image. In fact, since frequency-fimifted Irnaga

Imag anlyss ad inerpetaion(Inw-pasa or 1-and-pase filtered) can be sampled ot lower

Seginetationresolution, we can adopt a coarse-fine strategy togetheir with this

the Clangage o aVA 11/70 uner UNX. Tis isalsoone ~ Thisiterative registration. agrtmwt oas iesrtg
A region segmentation program [11I! has been reimplemented In

our Tsstbed crentributions and wi'l soon be dlelivered to SRI. This was applied to stere matching problem, Using the -Nvyw

segmentatuion program has all the features of the Ohlander-Price- rnpe trtv om.a eede~e o ohtedsaiya ~i
Shafer se~jmentatiort method. In addition, it will include enriched for the camera mn~xdsl. They were tested with real images
capabilities for manual /automatic image analysis (region analysis,

region representation, histogram evaluation, threshold selection). Feature Extraction

.p~g~~g~rti~nand Stereo Analysis Automatic stere matching and intepretation of urban scenes

Include difficult and now problems. In stere, for example, large
Lucas [71 presents an Iterative imr~ge registration technique, a discontinuities of disparity must be explicitly taken into account.

type of tNewton-Ralphson Iteration, that uses spatial Intensity For this, it is important first to extract cultural features, so&ic as

graien inoratin t drec th sarc fo th psiton f he dge ad crnes o bildngs Sem atcin ca be&n
beet match. This technique takes advantage of the fact that in using those features. Photographs of urban areas have common

graiet ifomatLnto dirc mtesarch fo th oiionafgte-egsanMonrsoapidn Stereo mthn a edn

SEgxetraction ExtractioneInternaltsis

a Cultural
OýS Dn atao Extractioil

(image DAsalayis

ýage Lan markMa
FlFure 6 Pr es n co fg rt n of M P
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characteristic5: they, include a large of number of linear features;

there A a a few dominant olientations, of the linear features due to

the fact that buildings and loads awe mostly aligned a-4

two parallel lines can be very close).

To Increas the accuracy of edge "oertors, their window sixe ' ', I
could be enlarged, bUx this often results in failure to detect tiny * -

foatuires. Deviation of the detected orientations of edgec by a 3x3 rho~..~

Sobe4 operator from true orientations was carefully analyzed. The -- Z5.: '4

result is shown in Figure 7, It illustrates how the operator gives 0. as202

better accuracy when ap~plied to edges aligned with the picture

axes. However, those directions are not known belorehand, and

vary from part to part of the image.
A B cs ysinO

First, the image is divided Into overlapping small areas (aboujt &x (C+2F+I) - (A+20+G)

1 00x10O). The 0 hletogi am of the Hough transform on each emaill=(+6iC)-(*H

%-e det~cs dominant orientations of edges In that area. For each H Iactan2(4y, Ax)

orientation, we recompute the morif precise edge orientation by
locally rotating the Images. Then, the p histogram is taken using

the revised O'n to separate individual line features. This method Figu re 7: Analysis of the nrror in thp cd~e orienta'Jon

allnws the extraction of very clooe parallel lines, such as ttie case measured by 4 ox3 Sobel operator

that one upper roof edge almost overlaps another lower roof edge. A W.mpiesep edge a asuned to wes the central pinei. The d~iay usoShows ~
We are continuoing this effort toward precise extraction of Ove 1tweU 91depnds (or eftl piad eNtur& l eo .ete~jpe

important micro features In urban scenes. Such an extraction

prc-odiuro will form a basis for sttereo matc~hina anid interpretation

of urban scones.
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UNDERSTANDING FEATURES, OBJECTS, AND BACKGROUNDS
PROJECT STATUS REPORT 1 APRIL 1980-31 JANUARY 1981

CONTRACT DAAG-53-76C-0138 (DARPA ORDER 3206)

Azriel Rosenfeld
Principal Investigator

Computer Vision Laboratory, Computer Science Center
University of Maryland, College Park, Maryland

ABSTRACT The current phase of the project is concerned

with three principal areas: (a) comparative
Current activities on the project are re-

viewed under the following headings: analysis of segmentation techniques applied to

FLIR imagery; (b) development of an inference-
1) Segmentation

based approach to target detection on FLIk imagery;
2) Local feature detection and (c) optical flow analysis of time-varying ima-

3) Feature linking gery. Work in area (b) is in progress and will be

4) Hiierarchical representation described in forthcoming technic I reports. Area

(a) has emphasized methods basea on hierarchical

("pyramid") image representations, some of which

are reviewed in this report and in two separate

papers In these Proceedings 12,31. Other sepa-

r;te papers (4,5] deal with some of the work done

n inaea (c). In addition, the project is preparing

software contributions to the DARPA/DMA Image

Understanding Testbed; the first of these will be

1. INTRODUCTION a general-purpose software package for implementing
This project is concerned with the study of relaxation processes at the pixel level.

advanced techniques for the analysis of reconnais- This report reviews activities on the project

sance imagery, it is being conducted under Con- during the period April 1980-January 1981. This

tract DMAG-53-76-C-0138 (DARPA Order 3206), moni- work is covered under the headings of segmentation;

tored by the U.S. Army Night Vision and Electro- local feature detection; feature linking; and hier-

Optics Laboratory, Ft. Belvoir, VA (Dr. George archical representation. The work is summarized

Jones). The Westinghouse Systems ievelopment only briefly, since it is covered in greater detail

Division, under a subcontract, is collaborating in individual technical reports and Image Under-

on implementation and application aspects. standing Workshop papers.

The previous phase of the proJjct, entitled

"Image Understandi Using Overlays", was conclu- SEGMENTATION

ded during the past reporting period. Accomplish- 2.1 Color pixel classification

ments under this phase are summarized in a Final When pixelc in a black-and-white image are

Report dated May 1980 [1], which also contains a classified by tnresholding their gray levels, gra-

bibliography of all reports and papers produced dient magnitude information can be used ini various

during this period. ways as an aid in threshold selection. In parti-

cular, a histogram of the gray levels of pixels

whose gradient magnitudes are low has sharper peaks
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and deeper valleys than the histogram of the entire 3. LOCAL FEATURE DETECTION

image, since the low-gradient pixels tend to come 3.1 Higher-crder edge detectors

froa the interiors of regions, not from regior bor- One way to define edge detectors for digital

der zones; it is easier to choose useful thresholds images is to fit a polynomial surface to a neigh-

(at valley bottoms) from this improved histogr.o, borhood of each pixel, and take the magnitude of

Analogously, when pixels in a color or multispec- the gradient of that surface as an estimate of

tral image are classified on the basis of their edgeness. The polynomial fitting process is

spectral signatures, the color gradient magnitude usually carried out for symmetric neighborhoods,

can be used as at, aid in defining decision surfaces using polynomials of degree 1 or 2. Using least

that separate clustecs of pixels having like sig- squares fitting by orthonormalization and

natures. In fact, a scatterplot of the signatures Richardson extrapolation, one can calculate such

of pixels whose color gradient magnitudes are low edge estimates for other classes of neighborhoods,

has more clearly separated clusters than the scat- and for higher-order polynomial models [81.

ter plot of the entire image, for the same reason As a further application of this approach,

as in the grayscale case. This phenorenon is edge detectors can be defined based on least-

illustrated in Figure I.' Fr further details and squares surface fitting in which the surface is a

additional examples, see [6). etep edge superimposed on a low-order polynomial

function. This makes it possible to "filter" op-
2.2 MosaickinR

timal step-based operator responses so as to dis-
When aerial photographs are combined into a

criminate against noise responses, by rejecting
photomosaic, seams are often apparent between the

responses for which the fit is poor, without dis-

ferences due to the different conditions under criminating against low-contrast edges (which is

unavoidable if thresholding is used for noise
thodh thepas been rereope ed .that rez at gra - suppression). An exawple of such edge "filtering"thod has been developed that gencý;;es a gray

level correction function such that, when this is shown in Figure 3. For other examples, and

function is subtracted from the mosaic, the seams further detailu, sce [9].

are eliminated, but the details of the photo- ý.2 Edge evaluation

graphs are not affected. The algorithm does not A method of evaluating edge detector output has

"assume any specific types of gray level differ- been developed, based on the local good form of

ences among the parts, nor does it require the the detected cdges. It combines two desirable

existence of overlaps between the parts, and it qualities of well-formed edges -- good continua-

can be used for arbitrary numbers of parts; but tion and thinness. The measure has the expected

it does have the drawback that if a seam coincides behavior for known input edges as a function of

with an edge between two regions, thac edge will their blur and noise. It yields results generally

be eliminated. The algorithm :onstructs a seam- similar to those obtained with measures L-se1 on

eliminating function which, when subtracted from ditcrepancy of the detected edges from rlieir known

the mosaic, causes the gray levels at pairs of ideal positions, but it hts the advantage of not

adjacent points on opposite sides of a seam to requiring ideal positions tc 6e known. It can be

become equAl, and which otherwise is as smooth used as art aid to threshold selection in edge

as possible. An example of mosaic seam elimlna- detection (pick the threshold that maximizes the

tion using this algorithm is shown in Figure 2. measure), As a basis for cosparing the performan-

Other examples, and further details, can be foand ces of ditferent detectors, and as a measure of

in [7]. the effectiveness of various types of preproces-

sing operations facilitating edga detection.
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This method is described in detail in a separate the strongest few vectors. A few Illustrations

paper in tnese Proceedings, where examples of its of this were given in an earlier raport; further

performance are also given [10]. details and ad&itional *xpaples cun be found in

[151.

4. FEATURE LINKII4G

4.1 Edge segment linking 5. HIEAIRCHICAL REPRISENTATION

A system of programs that links edge segments Extensive work has been done on this project

based on both gray level and geometric criteria has on the use of pyramid and quadtrae structures for

been developcd and applied to the detection of image representation and processing. The work

buildings and roads on aerial photographs. Pre- done in this area through March 1980 was sus-

liminary results using these programs were de- marized in [161. In this section we briefly

scribed in (11]; a more detailed description, and summarize developments in this area during the

numerous additional results, are presented in [12]. past reporting period.

Further work along these lines led to the deve- 5.1 uadtaee-to-raster conversion

lopment of figures of merit for linking compa- An algoritha for converting quadtree represen-

tible segments (i.e., segments that could be con- tationb of binary images to row-by-row (e.g., run-

secutive sides of an object) and antiparallel seg- length) representations was described and partially

ments (i.e., segments that could be opposite analyzed in an earlier report. More recently, a

sides). For compatible pairs, the figure of merit comparstive study and complete analysis of four

is based on the geometrical configuration of the such algefithms has been conducted (171. The

segments, the similarity of the gray levels on simpleat algorithm is a straightforward top-down

their "object" sides, and the similarity between approach that visits each run in a row in succes-

their object sides and the line joining their end- sion starting at the root of the tree; the other

points. For antiparallel pairs, it is based on algorithms proceed in a manner akin to an inorder

the homogeneity of gray level between the edges tree traversal. The analysis shows under what

and the amount of overlap between them. These circumstances each algorithm is preferable. They

figures of merit have highly bimodal histograms, have all been shown to have execution times pro-

making it quite easy to decide wi•ich pairs of porticnal to the sun of the heights of the blocks

segments should be linked, as illustrated in comprising the image.

Figures 4 and 5. They should be useful in the 5.2 Quadtree-based image smoothing

design of relaxation-like schemes for classifying Two methods for smoothing an image using quad-
edge segments, For further details, and many addi- tyee approximations to the image have been de-

tional results, see (13,14]. veloped. Ore uses the sizes of the leaves in the

4.2 Reconstruction from gray-weighted medial quadtree to determine neighborhood sizes over

axes which to apply the smoothing. The other method

A method of defining a "min-max medial axis maps each image gray level i into the gray level

transformation" (FiNMAT) for grayscale images, based j into which i most frequently maps when we replace

on iterated local MIN and MAX operations, v'as the level of each pixel by the level of the quad-

described ta i previous report (11. This transfor- tree leaf to which it belongs. Results obtained

mation associates with each pixel a vector of gray using these methods, as well as a local histogram

1 vel increments, and txacc recoustruction of the peak sharpening method, are shown in Figure 6.

image is possible from these vectors. Moreover, The second quadtree-based method sems to give the

good app. oximqtions to Lhe image can be recon- beat results. Additional examples, and detailed

struct..id using only the strongest components of descriptions of the aethods, can be found in 1181.
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5.3 Edge pyramids and ,uadtres8 in a separate paper in these Proceedings (3]. It

An edge (or curve) pyraami is a sequence of has also been found that forced-choice linking of

succeasively lower-resolution versions of an Image, blocks to larger blocks is not necessary; one can

each containing a summary of the edge information uwe weighted links, recomputing tho weights at

in its predecessor. This summary includes the each iteration, and it turns out that the weights

average edge magnitude and direction in each converge to O's and l's as the process stabilizes.

"block" of the higher-resolution Im"e, together Generalizations of this approach to image features

rl with an intercept in that block and a measure other than gray level, including color signatures

of the arror in the direction estimate. An edge and textural properties, have also been investi-
quadtree, analogously, is a variable-resolution gated and will be described in future reports.

representation of the edge or curve information

in the given Image, constructed by recursively References
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become more reliable, but they are more likely to Proceedings.

be mixed, since a large block will often not be 5. K. Prazdny, Determining the InstantRneouq
Direction of Motion from Optical 1Fliý, Generated

contained in a single region of the image. A com- by a Curvilinearly Moving Obeerv.., £R-1009,

promise approach is to use several block sizes, Computer Vision Laboratory, Compuc;. ScLonce
Center, University of Maryland, College Park,

representIng versions of the image at several reso- MD, February 1981; also appeari in these

lutions, and to carry out the smoothing by means Proceedings.

of a cooperative process based on links between 6. A. Broder and A. Rosenfeld, Grti.ient Magnitude

blocks of adjacent sizes. These links define as an Aid in Color Pixel C(lss.if!.cation, TR-
906, Computer Vision Laboratory, Computer

"block trces" which segment the image into regions, Science Center, University of Ma yland, College

not necessarily connected, over which smoothing Park, ND, June 1980.

takes place. The basic "pyramid linking" scheme 7. S. Peleg, Elimination of Sejns from Photomo-
saics, TR-895, Computer Vision Laboratory,

was described in an earlier report. Further ex- Computer Science Center, Uriversity of Mary-

pernaents with this scheme have led to some in- land, College Park, ND, Apill 1980.

provoments over the original method, based on 8. D. G. Morgenthaler, Feature Detectors Based on
Higher Order Polynomials, TR-8!a)6, Computer

better ways of initializing the process and measur- Vision Laboratory, Computer Ucience Center,

Ing the link merit. A detailed description of University of Maryland, College Park, MD,
April 1980.

theoe experiments and their reuults can be found
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9. D. G. Morgenthaler, A hew Hybrid Edge Detector,
TR-897, Computer Vision Laboratory, Computer
Science Ce.ter, University of Maryland, College
Park, YD, April 1980.

10. L. Kitchen and A. Rosenfeld, Edge Evaluation
Using Local Edge Coherence, TR-981, Computer
Vision Laboratory, Computer Science Center,

University of Maryland, College Park, MD,
December 1980; also appears in these Pro-
ceedings.

11. M. Tavakoli, Toward the Recognition of Cul-
tural Features, Proc. DARPA Image Under-
standing Workship, April 1980, 33-j7.

12. M. Tavakoli and A. Rosenfeld, Toward the
Recognition of Buildings and Roads on Aerial
Photographs, TR-913, Computer Vision Labors-
cory, Computer Science Center, University
of Maryland, College Park, MD, July 1980.

13. M. Tavakoli and A. Rosenfeld, A Method for
Linking Pairs of Compatible Liuear Features,
TR-930, Computer Vision Laboratory, Computer
Science Center, University of Maryland,
College Park, MD, August 1980.

14. M. Tavakoli and A. Rosenfeld, A Method for
Finding Pairs of Anti-Parallel Linear Fea-
tures, TR-943, Computer Vision Laboratory, Figure 1. Scatterplot enhancement by suppressicn
Computer Science Center, University of Mary- of high-gradient pixels.
land, College Park, MD, September 1980.

15. S. Wang, A. Y. Wu, and A. Rosenfeld, Image key to parts: d e f

Approximation from Grayscale "Medial Axes," a b c
TR-900, Computer Vision Laboratory, Computer
Science Center, University of Maryland, a-b) Two bands
College Park, MD, May 1980. c) Scatterplot of (a) vs. (b), log scaled

16. A. Rosenfeld, Some Uses of Pycamids in Image d-e) Edge responses in the two bands (RMS
Processiyng and Segmentation, Proc. DARPA Roberts operator)
Image Understanding Workshop, April 1980, f) Color edge response: RMS of (d) and (e)

112-120. g) Enhanced scatterplot, log scaled; pixels

with edge responses > 2 have been suppressed
17 H. Samet, Algorithms for the Conversion of h) Mask showing suppressed pixels

Quadtrees into Rasters, TR-979, Computer Vision i) Histogram of edge responses, log scaled
Laboratory, Computer Science Center, Univer-
sity of Maryland, College Paik, MD, November
1980.

18. S. Ranade and M. Shneier, Using Quadtrees to

Smooth Images, TR-894, Computer Vision Labora- J
tory, Computer Science Center, University of
Maryland, College Park, MD, April 1980.
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(a)
(a) (b) (c) (d)

Figure 2. Mosaic seam eliminatiwon c y relaxa-
tion: (a) Original (h-d) After 50,

100, and 200 iterations

i

Figure 3. Suppression of low-fit edges

a) Original (skull cross-section)

b-c) High-fit edges (two-thresholds). Note that
the lower threshold brings out the low-
contrast edges without affecting the noise
edges outside the skull.

(c)
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Figure 4. Compatibility merit for edge segments
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a 1) Input: image
2) Results of histogram sharpening
3) Results of variable-neighborhood

smoothing
4) Results of smoothing using vqost

(a) Antiparallelness merits for the seg- frequent leaf value
ments in Figure 4b
/ S
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a(1) Hinptogaso h image si(a

(b) Pairs of segments having ansiparallel-
ness merit 3a 2.

Figure 5. AntAparallelness merit for Figu-requ e-based image moothng
edge segments

215

S. ...... J C & 4 1 ;... ._ .. ..

• ••.2 • ,':• • •'• " " • ' .. .. . ... .... . ... . . . . .



MIT PROGRESS IN UNDERSTANDING IMAGES

Michael Brady

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

In this series of Image Understanding Workshop Shape from shadlng and occluding boundaries

Proceedings. we k'iw stressed the issue of represmtation. In
particular, we have do-cribed the dewelQpment by Horn and Horn and his collaborators have devoted considerable
his collaborators of the reflectance map and the albedo attention to computing the shape of a visible surface
image, and we have described the work of Marr and his from the intensities that comprise its image. The
collaborators using the primal sketch, the 2 1/2-D sketch, relationship between them is expressed mathematically by
and axis-based 3-D models as part of a comprehensive the Image Irradianre Equation, which is a first order
theory of recognition. partial differential equation of the form

In Ahe April, 1980 Proceedii gs. we reviewed work
on texture gradients, zero crossings, and atmospheric l(xy)=R(pq),
modelling. We introduced Horn and Schunck's work on
the determination of optical flow fields from smoothly where p and q are is suitable pair of parameters that
varying brightness patterns, specify the local surface normal. One such pair is the

Here we review work on using occluding gradient of the depth function z from the observer with
boundaries to facilitate the computation of shape from respect to the image coordinates x and y. The function R
shading. the interpolation of smooth surfaces f,'om a encodes the reflectance characteristirs of the surface and
discrete set of points, the detection and perception of the distribution of light sources, both of which are
motion, vision hardware, and the geometric relations made assumed to be unknown but fixed (see Horn 1975, Horn
explicit in the full Primal Sketch. and Sjoberg 1980). Horn(1977) introduced the

Reflectance Map which associates with each surface
introduction orientation (pq) of Gradient Space a scaled value for the

image inten-ity R(pq). The Reflectance Map has proved
Practical applications of Image Understanding require the to be a va'uable representation in several diverse
development of algorithms to perform processes auch as applications of shape from shading (Woodham 1978,
extracting the important intensity changes from a scene, Sjoberg and Horn 1980, Silver 1980, ikeuchi 1981).
or detecting movement in an image and interpreting it as The earliest algorithm for computing shape from
motion in space. One approach is to develop algorithms shading was devised by Horn(1975). It exploited the
that are tailored from the start to a particular application characteristic strip method of reformulating a single
domain. An alternative is to understand the iasic partial differential equation as a set of five ordinary
principles underlying each such module. One may then differential equations. The idea is to determine the shape
be in a position to apply substantially the same ideas in of a surface by computing a set of space purves, called
situations as diverse as remote sensing, object recognition, characteristics, which are everywhere tangential to tha
and object tracking. We have followed the latter course. surface. Porn(1975, 197',) derived an iterative algorithm
One important process is the determination of surfaces to find characteristic strips. It starts from a point
from images. This is the goal of stereo, shape from (x0 ,y0 ) in. the image at which the surface gradieet
shading, shape from texture, and shape from motion. (p0 ,q 0 ) is known. The step from (xn,yn) to

Progress on this problem, including the interpolation of (X(n+I),Y(n+l)) is in the direction of the normal to the
smooth surfaces from a discrete set of boundary points is iso-brightness contour passing through (pnQn) in the
:, recurrent theme in the current report. Reflectance Map. Similarly, the incremental change in
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gradient from (pn,qn) to (P(n+l),q(,nl)) along the appears to converge, though it is not known at how many
characteristic is in the direction of the normal to the points it is necessary to specify th2 (Stereographic
iso-brightness contour passing through (xn,yn) in the parameterisation of the) surface normal.
image, Druss(1980) has recently studied mome of the

One problem with this method concerns the mathematical properties of the Image Irradiance
choicc of the singular image point (x0,Y0 ) required to Equation. First, she has shown that discontinuous
start the iterative process at which the surface gradient solution surfaces can arise from a continuous Image
(p0 ,qo) is determined uniquely by the intensity data. A Irradiance Equation. It follows that one cannot
further problem is that Horn's algorithm depends on determine for a continuous Image Irradiance Equationfumtherproblem tha thet undrlying'srfaceis lo y ep onthex whether or not there is an edge. The curvature of aa s,•u m p t io n t h a t t h e u n d e r ly in g s u r f a c e is lo c a lly c o n v e xs u f c al o a n t b e d e r i d f o m t s m g . A s nsurface also cannot be determined from its image. As an
at the singular point. Finally, the class of Ihe Im2age rradiance Equation x2+y2=p'4q2 has
Irradiance Equations for which Horn's algorithm works two the me rilEtion s one 'pf4qhi h as
was unknown. (The latter question has recently been tirent solions s, one of hic consists
answered by Bruss(1981).) Consequently research was entirely of hyperbolic points, while the other consists
directed to discover the criteria under which the shape of entirely of elliptic points. However, Druss has proved
a surface is uriquely determined by an image. One that there is only one solution that is convex. She hasa sufac isuniuel deermied y a imgeOne also shown that bounding contours can be determinedsuggestion was that bounding or occluding contours
provide such conditions. Along such contours the surface from the image only when the Image Irradiance Equation
normal can be computed exactly from the image. is singular. This means that the reflectance function R
However, occluding contours pose a problem for the and its first order partial derivativ,:.- are continuous, while
gradient parameterisation of local surface orientation, the intensity function I is singular in x and/or y. For any
namely at least one of the gradients p or q is infinite. given singular Image brradiance foquanon the point, on
Ikeuchi and Horn(198l) propose a different the occluding contour can be found by inspection of the
parameterisation ol su'fa'e orientations that corresponds intensity function l(x,y).
to Slereoraphic P~vthw. Whereas Gradient S is Bruss has studied singular "eikonal" Imagei le(to gtropis assmed that thervewpins fromiethSae isouh tesnua onta st a a h om
the planar projection of the Gaussian Sphere from its Irradiance Equations that are of the form p2 4q2 1(xy).
center, the Stereographic Projection is from the north If the intensity function i(xy) manishes to second order ,Mtp.1le (it is assumed that the viewpoint is from the south the singular point, that is to say has the form

pole facing the center of the Gaussian Sphere). ax 2 +$3xy+xy2 +O(xJ3 +JyI 3 ), then there is exactly one
Ikeuchi and Horn(1981) note some additional positive locally convex solution surface in the

p-ohlems with the characteristic strip method for solving neighborhood of the singular point. This result is applied
4 the Image Irradiance Equaiion. First, since the method to show that if there is a closed bounding contour, the

proceeds unidirectionally along the strip, the method solution surface is unique (up to translation along the z
cannot exploit boundary conditions at bWth ends of the axis). If either the reflectante function is not p2 +q2, the
strip. Second, the build up of numerical errors along any intensity function does not vanish precisely to second
individual strip can be. substantial. The alternative order, or there is not a smooth closed bounding contour,
method devised by Ikeuchi and Horn is to formulate a there is not a unique solution surface.
smoothness condition in terms of the Stereographi,,. Progress on shape from shading means that we
parameterisation and use it as the basis of a local paral'el can corapute the topography of the visible surfaces from
computation which "filis in" local surface normals from an image by a local parallel computation which is
the known values on the boundary to the unknicwn naturally implemented in hardware. It exploits reliabie
interior. The resulting algorithm has been tnted on a information, and, as a result of the theoretical
variety of images and works well. In particul'-,r, it developments sketched above, we can reasonably predict
appears to degrade gracefully as errors are introdu,,-,ed to the behavior of the algorithm in unpreiictable situations.
the placement of the light source, the surface obreaation
on the boundary, and the nature of the reflectivity The detection and VerceptioE Pf motion
assumed for the surface. Strong empirical evidence is
provided that the algorithm converges, although no proof In the last workshop Procedings we sketched an
is demonstrated. In case the occluding contour 0 algomithm to determine optical flow. Optical flow is the
partially incomplete, Ikeuchi and Horn's algorithm still dim.tribution of veloceties of apparen' movement caused by

217

<1.. _



smoothly changing brightness patterns. It has been noted made on understanding motion, based on our work with

that optical flows encode rich informrtion about a scene several other representations. The following paragraphs

and observer motion, and it has been suggested that this summarise our efforts.

information can be computed from the flow field. In Previous workshop Proceedings have reported

particular, it has been proposed that optical flow our work on zero crossings. Marr and Ullman(1980)

facilitates object segmentation, computation of the suggested that the time rate of change of

parameters of the observer's own motion relative to the S(x,yt)=D 20(xy)*I(x,y,t) can enable ouie to detect the

scene, and the determination of visible local surface direction of motion of zero-crossings. The practical

normals. importance of this approach is that in attempting to track
For the most part, research has been concerned the motion of objects, it seems reasonable to find the

with interpretation. It is generally supposed that the flow important intensity changes and find out what they are

is given, that it is somehow computed automatically and doing. Let T(x,y,t) denote the partial derivative of

sufficiently noise-free by "velocity sensitive neurons" in S(x,y,t) with respect to titme. Marr and UlIman consider

animate visual systems. Horn and Schunck(1981) have the response of S(x,y,t) and T(x,yt) in the vicinity of an

studied the generation of the optical flow from smoothly moving isolated intensity edge, thin bar, and wide bar.
time varying brightness patterns. They restrict attention They show for example for an edge moving to the right,
to imaging a flat surface, uniform incident illumination, T(x,y,t) is positive at the zero crossing, while for motion
and smoothly varying reflectance. With these to the left it is negative. Marr and UlIman propose that
assumptions, the image brightness at point (xy) at tirne t motion to the right can be detected by the simultaneous
is governed by activity of S+, T+, and S. Here S+ refers to the positive

Exu+Eyv = -Et, component of S.
Work on directional selectivity has suggested a

where (u,v) is the optical flow. This linea' constraint possible VLSI implementation of the D20(x,y) operator
specifies the component of the flow normal to the based on an analysis of the animate retina. Marr und

brightness gradient. In order to compute the comiponent UlIman find close agreement at moderate speeds between
of the flow along iso-brightness contours a further their theoretical predictions of the response of ganglion X
assumption is required. Horn and Schunck propose a and Y cells to simple moving stimuli and actual cell

measure of the smoothness of flow. The departure from recordings from the Physiology literature (see Richter
smoothness and the error due to changing brightness are and Ullman 1980, figures 13 and 15.) Richter and
combined and used to define an iterative algorithm for UlIman have recently accounted for the discrepancy at

computing the flow from a sequence of images. high speeds, and generally refined the model of
The algorithm works well on synthetic images, directional selectivity by noting that the GaussiAns,

tspecially when there are no depth 6oundaries. It also whose difference approximates D2G(x,y), act like RC
se'ems to give good resvIts whert there are depth filters wvith difrerent time constants. This causes a slight
boundaries, though the errors in the flow become delay in the onset of the negative outer part relative to

significanat on the boundary. Schunck is continuing to the positive central part. Richter and UlIman's
develop the algorithm to make it more generally useful. predictions show remarkable agreement with cell
It is already clei- that it is difficult to achieve the ideal recordings for a wide variety of stimuli.
noise-free flow fields assumed as input by published Motion at tile level of the Primal Sketch and up

interpretation schemes. Consequently, we shall reconsider reqtlires careful attention to coordinate frames. Brady
the interpretation of flow fields generated as the output and Prazday(1980) showed how apparent or induced
of Horn and Schunck's algorithm, motion can be explained on the basis of eye tracking and

Generally, progress in the determination and local coordinate frames. Local coordinate frames were a
percept-on of motion rests on the isolation of useful major concern of Marr and Nishihara(1977) in their
representations, since motion refers to changes to ihose contributions to object representaliops based on
representations. For example, Uliman's(1978) work on generalized cones.
the correspondence computation followed Marrls(1976)
discussion of the Primal Sketch. Similarly, the Interpolation of curves and surfaces
determination of optical flow sketched above rests upon
Horn's work on shape from shading. Progiess has been Many of the visual processes discussed here and in
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previous Proceedings compute the shape of a visible system constructi the most conservaste curve or sudrace
surface by finding the local surface orientation consistent with the data. We are able to interpoliute
everywhere within its boundaries. This includes the work smooth curves and surfaces without involving rich

of Horn and his colleagues on shape from shading, and semantics. It also seems that the shape of the boundary
the computation of shape from texture investigated by plays the most significant role in determining tlie
Stevens(1980) and Witkin(1980). On the other hand, interpolated surface (see for example figure 2-3 in Barrour
binocular stereo computes disparity at the discrete set of and Taenbaum 1981.) Taken together, these ideas
zero cvossings. A change of coordinates can convert suggest that the interpolation process can be modelled In
angular disparities to depths, but to comp•ute the local terms of modern control theory (see for example, Schultz
surface normal everywhere on a vii'.le surface it is first and Melsa 1%7). The idea is to isolate an appropriate
h-cessary to Interpolate a ;mooth surface from the "performance index" P and def.ne the interpolated
discrete set of given points. Binocular stereo is not the surface to be the one that minimises the integral of F
only module which gentrates an incomplete surface subject to the boundary constraints. Clearly, one
orientation map. Stevens(1981a) considers the requirement on the performance index is that a minimal
interpretation of surface contours, and finds that they suirface should be guaranteed to exist for any given set of
strongly constrain the perception of the underlying boundary values. To this end, Grimson has proved the
surface. Horn(1982) and Marr(1978) suggest that in following theorem: Suppose that there exists a complete
addition to local surface orientation, it is advantageous to seminorm d on a space H of functions, and that d
make explicii discontinuitels in surface orientation and satisfies the parallelogram law. Then every non-empty
depth. It ic not yet clear how surface normals should be closed convex subset of H contains a unique function of
parameterised, nor how accurately their values should be minimum seminorm.
represented. Moreover, substantial advantages are likely A number of plausible performance indices can
to accrue from attaching texture and color descriptors to be evaluated in the light of this theorem. nrimson notes
visible surfaces, but the details are as yet unclear, that the mean and Gaussian curvature do not satisfy the

We have studied the interpolation of a smooth required conditions. He suggests using instead the
surface from a discrete set of points. One possibility is to quadratic variation, which is defined to be
use Coons p~atches, and Bezier and Ferguson surfaces fx2+2fxy2+fyy 2, and derives a 5 by 5 interpolation
developed for work in Computer Aided Design (CAD) operator to compute the minimal surface. The square
and Computer Aided M-nafacture (CAM)(see Faux and Laplacian also satisfies the conditions of the theorem, but

Pratt 1979.) A practicil difficulty with this approach is rejected by Grimson on the grounds that its null space
st-ins from the spatial irregularity of the discrete set of is larger (see Grimson 1981, section 3.1.4.) Recently,
boundary values (for example disparity values at matched Brady and Horn(forthcoming) have noted that any
zero crossings.) Consequently we have investigated quadratic form in fxx, fXy, and fyy satisfies the theorem.
surface interpolation using what we know about human They have shown that the quadratic forms which are
vision, by isolating constraints which have not figured rotationally invariant form a vector space which has the
largely in the development of CAD/CAM. Essentially, square Laplacian and the quadratic variation as a basis.
two such constraints have been uncovered, and &ure Since the quadratic variation has the smaller null space, it
currently receiving attention. is to be prefered.

The first was introduced by Grimson(1981). Brady, Grimson, and Langridge(1980) use an
Suppose that a smooth surface S is interpolated from a approximation to the one dimensional quad'atic variation
given set of boundary values. Grimson observes that the fx,2 to argue that subjective contours are cubics. The
absence of a boundary value at (x,y) means that the exact mihimal integral curvature curve has recently been
gradient ot S cannot change too rapidly there. Grimson found by ilorn(1981'V. Brady and Grimson (forthcoming)
has coined a suggestive slogan for this analysis: no news use these ideas about surface interpolation to propose
is good news. To make this observation precise, Crimson that subjective contours arise from surface perception.
notes that Horn's work on image formation enables
conditions to be derived on the zero crossings. that would Real time convolution
arise from the surface S.

The second constraint is based on the idea that, At the last workshop we took delivery of a number of
in the absence of contrary evidence, the human visual the Hughes Research Laboratories VLSI multi-function
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convolution chips prepared for the DARPA Image The convolutio, module was the central focus of
"Understanding Prorram (see Nudd et. al. 1980.) We the first half of our development effort becamuse of the
began to construt the hardware necessary to test and large computational demaiids it makes. For digital
evaluate them. Specifically, a "serpentine memory" was Gaussian convolution with a 32 by 32 mask size, a
required to buffer video output from a TV camera so minimum of 32 multipies are required for each pixel To
that 26 successive image lines could be fed to the maintain adequate precision, the first one-dimensional
convolver in parallel at video ratcu. The VLSI circuit is convolution requires 16 8x8 multiplies while the seomnd
designer to convolve the image with a built-in 26 by 2b requires 16 8x46 multiplies. Using TRW multiplier chips
difference of Gaussian mask, producing a video signal we are able to proces just under one million oixels per
that lags the TV input by 26 lines. In the process of second. Higher pixel rates should be obtainable with
daong this, we found that we could design a convolver more parallel or analog designs such as the Hughes
,t.ing digital TTL technology that could process one convolver chip.
million pixels per second. Although this is slower than A central issue was whether to compute the
the speed claimed for the Hughes chip, the TTL Laplacian of . single Gaussian convolution, or
approach has a number of advantages for us. rhe approximate it as the difference of two Gaussians (Marr
extensive analog circuitry necessary to operate the and .Hildreth 1980.) Generally, for Gaussian convolutions
Hughes chip can be avoided. The all digital design with a given precision, the difference of Gaussian
provides more precision than is possible with the analo& approach offers a better signal to noise ratio because of
storage of weights and intensities, and digital logic is the second-order differences that arise from computing
easier to debug and modify. Fin1lly, variable sized the Laplacian. Designing two copies of the same
Gaussian filters could be provided, convolution circuit is also easier, so the difference of

The design of the TTL convolver embodied two Gaussian approach was selected,
principal guidelines. First, the convolver was required to The resulting hardware takes $ bit pixels as
serve as the first stage of a real time implementation of input and prodvces signed 16 bit numbers as output.
the Marr-Pogeio-Grimson theory of stereo vision (Marr The 32x32 Gaussian mask size allows difference of
and Poggio 1979, Grimson 1980, 1981). Eventually wt Gaussian convolution masks with central positive
hope to be able to carry out the matching process diameters of between 2 and 12 pixels. Using array to
required by the theory without using large "frame buffer" array m6de on a Lisp machine, a 1000xl00 image of 8
metrories for storing the intermediate results of matching, bi' pixels can be convolved and the result stored as a
The freedom from having to use a fram. buffer allows us I000xl000 array of 16 bit numbers in about 20 seconds.
to hundle images with an arbitrary number of lines. The Of this time, only 1.5 seconds is needed to convolve the
present system handles 1024 pixels per line and places no image, the remainder being used for paging between disk
restriction on the number of lines in the image. Second, storage and memory.

the entire system was designed as a set of modules that
can be separately developed. Each module takes an array The Full Primal Sketch I
from the Lisp machine memory Qs input, and writes its
resulti, into another array. A consequence of this design There were two distinct aspects to Marr's(1976) original
decision is that we have been able A.c write software ,discussion of the Primal Sketch representation. First, the
simulations of incomplete parts of the overall system on important intensity changes in the image are made
the Lisp machine and test the system as a whole explicit and described as blobs, terminations, and-various
throughout the development process. kinds of scene event such as shading edge. This

The current system takes its input from a description was called the Raw Primal Sketch. ISecond,
one-dimnensional solid state CCD array camera in the Full Primal Sketch is a hierarchical representation
conjunction with a mirror deflection system. The current that results from making explicit the local geometrical
camera is a 1024-element linear array scanner. A structure of the "place tokens" comprising the Raw
shortcoming of such devices is their limited light Primal Sketch and lower levels of the hierarchy.
sensitivity i'esulting from the brief integration time as the Marr(1976) suggested a number of processes which can
mirror sweeps over the image. The present sysvrem works plausibly discover the local organisation perceived by
well with studio lighting. humans. These include collinearity, parallelism, the

formation of "clusters", and "theta aggregation".
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For example, suppose that a striped surface References
textare such as ruled writing paper is o'cluded by some
nearer surface such as a book. In the Raw Primal For an extended discussion of MIT work on Image
Sketch, the line terminations ,orresponding to the rulings Understanding, see Volume 2 of Artificial Intelligece: an
of the paper intersecting the bounding contour of the MIT Perspective, edited by Patrick. H. Winston and
book would be aligned. That geometric arrangement has Richard H. Brown, MIT Press, Cambridge, Masshusetts,
to be discovered as a curvilinear aggregate, and a 1979,
description of it written down in the Full P.rima, Sketch.
In this way, the Full Primal Sketch aims to make explicit Barrow H. G. and Tenenbaum J. M. (1981), "Interpreting
the geometric properties that facil-tate the interpretation line drawings as three dimensional surfaces", Arificial
of the Raw Primal Sketch in terms of physi~al surfaces. 'telligence: Special issue on Computer Vision ed.
Riley's(1981) forthcoming thesis examines the theoretical Michael Brady, Vol 16.
basis for the Full Primal Sketch, and shows that
discontinuities in certain attributes of the Raw Primal Brady J. Michael and Prazdny K. F. (1980),
Sketch description are reliably correlated with edges of "Extra-retinal signahs influence induced motion: a new
p.ysical surfaces while others may eithei,, be due to kinetic illusion", AIM-580, The Artificial Intelligence
surface creases or physical edges. Riley's work shede Laboratory, Massachusetts Institute of Technology,
some light on the confuwing psychophysical phenomena of Cambridge, Massachusetts.
texture discrimination.

Stevens(1981b) has worked in a complementary Brady J. Michael, Grimson W. E. L. Rt.0 Langridge D.
area, studying how collinearity among pointi is detected. (1980), "The shape of subjective contours", Proc. AAA4,
Marr(1976) conjictured that grouping (such as Vol 1, 15-17.
curvilinear aggregation) should be performed, on symbolic
place tokens which mark distinguished points in the Bruss Anna R. (1980), "The image irradiance equation:
impge. Stevens has developed theoretical and its solution and application", PhD thesis, December 1980.
psychophysical evidence in support of this conjecture for To appear as TR-623, The Artificial Intelligence
human vision. The core of Marr's place toketi hypothesis Laboratory, Massachusetts Institute of Technology,
is that grouping and aggregation procestes operate not on Cambrilge,, Massachusetts, 1981.

the image, but on tokens extracted from the Raw Primal
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THE SRI IMAGE UNDERSTANDING PROGRAM*

H. A. Fischler (Principal Investigator)
Andrew J. Hanson (Testbed Coordinator)

SRI International, Menlo Park, California 94025

ABSTRACT * Finding roads in aerial imagery.

* Distinguishirg vehicles on roads from

Our principal objective in this research shadows, signposts, road markings, etc.
program is to oitain solutions to fundamental
problems in computer vision that have broad * Comparing multiple images and symbolic
military relevance, particularly in the areas of information pertaining to the same road
cartography and photo interpretation. In addition segment, and deciding whether significant
to our own research, we are designing and changes have occurred.
implementing an integrated testbed system that
incorporates the results of research produced The general approach, and technical details of
throughout the image understanding community. This the Road Expert's components are contained in
system will provide a coherent demonstration and References [2-7]. We have integrated these
evaluation of the accomplishments of ARPA's Image separate components into a coherent system that
Understanding Program, thereby facilitating facilitates testing nd evaluation, and have
transfer of this technology to the appropriate transfer:red this system to the ARPA/OMA Testbed.i
military organizations.

In the most recent phase of our work, we have
initiated major efforts in two new directions. The
first is in support of a joint ARPA/DMA pragram to
provide a framework for demonstrating and

I INTRODUCTION evaluating the applicability of image understanding
research (from throughout the entire IU community)
to military problems in general, and to the

Research at SRI International under the ARPA problebw of automsted cartography in particular.
Image Understanding Program was initiated to Our plans and progress in this effort (ARPA/DNA
investigate ways in which diverse sources of Testbed) are described in an appendix to thin
knowledge might be brought to bear on the problem paper.
of analyzing and interpreting aerial images. The
initial, exploratory phase of research identified The goal of our second major effort is to
various means for exploiting knowledge in the broaden the scope and generality of our image
processing of aerial photographs for such military understanding researezh--epecifically in the areas
applications as cartography, intelligence, weapon of three-dimensional terrain undarstanding,
guidance, and targeting. A key concept is the use perceptual reasoning, linear-feature analysis, and
of a generalized digital map to guide the process image description and matching. A parallel
of image analysis. The results of this earlier research program (described in Reference [7]),
work were integrated into an interactive computer jointly supported by AL.PA and NSF, complements
system called "Hawkeye" [1]. This system provides these investigations by focusing on fundamental
necessary basic facilities for a wide range of computational principles underly'ng the early
tasks in cartography and photo interpretation, stages of visual processing in both man and

machine.
Research subseque.tly focused on development

of a program capable of expert performance in a
specific task domain--road monitoring. The primary 11 RESEARCH PROGRESS AND ACCOMPLISHMENTS
objective of this continuing research has been to
build a computer system, called the Road Expert,
that "understands" the nature of roads and road Our current research efforts are focused on
events. It is now capable of performing such tasks three somewhat independent problem domains:
as

* Detection, delineation, and interpretation
of linesa features in aerial imagery.

* The research described in this paper is based on work performed under Advanced Researcn Projects Agency
Contract No. MDA903-79-C-0588.
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* Image matching and image-to-Database that contain a significant percentage ` %ris
corvespondence techniques (including errors. It is thus ideally suited iot ,1cat!
landmark selection and detection techniques in automated image analysis in which intr.pretaw in
ion application to autcnomous vehl.cle is based on the data provided by error-V.one
navigation). feature detectors. A major portion oi thz s , ,!r

(8] describes the application of RCAS" to tl,.
*3-D comp;tation and interpretation (stereo Location Determination Problem (LD1)- given an

matching, modeling, and raised-object image depicting a set of landmarks with known
cueing). locations, determine that point in space from wtich

the image was obtained. New results are der.'vel
for the minimu number of landmarks needed to

A. Research in Linear-Feature Analysis obtain a solution, and algorithms are gi-en for
computing .hese minimum-landmark solutions in

The task of analyzing and interpreting linear closed form. These results form the basis for an
features in aerial photography has a natural automatic system that can solve the LDP even undet
partition batied on the resolution of the imagery. severe viewing and analysis conditions.

In working with low-resolution images, where We have now begun an investigation of the
the linear structures are "line-like" in problem of how to select and identify landmarks
appearance, we have been primarily concerned with automatically--i.e., the design of a "Landmark
techniques for automatic delineation. A summary of Expert." This effort will benefit from our work on
our past work in this area is contained in 3-D compilation and raised-object cueing.
Reference (6]. In that paper we described road
domain applications of the techniquea we had
developed for combining and linking multisource C. 3-Dimensional Conilation and Interpretation
information. We are now investigating the
application of these techniques to other types of We have initiated a number of new efforts in
low-resolution linear structures. The key step stereo matching and stereo modeling. With respect
here is finding suitable models to describe the to the former, we are investigating the feasibility
"local" appearance of these linear structures, of an adaptive matching technique whose parameters
Figure I shows some preliminary results in the are determined by the local geometric and
detection and dilineation of rivers. photometric scene characteristics. As regards to

stereo modeling, we are developing methods for
In high-ree.olution imagery, where the internal analyzing areas that cannot be matched, as well as

details of the linear structures are visible, the for identifying occlusion edges and small raised
models and tracking techniques are necessarily objects. As part of this new work, and also as an
somewhat domain-specific. A very asccessful adjunct to the testbed effort, we have written a
approach to road tracking is descr'°ed in Reference paper [10] that presents an overview and evaluation
(3]. Our current work in this ar(.a addresses the of the qtate of the irt in stereo compilation.
problem of identifying and desc'.bing generic
classes of objects that appear within the road Stereo Matching
boundaries (cars, shadows, road markings, etc.).
Our approach is first to dynamically model the The goal of a stereo compilation system is to
nominal road surface intensity pattern, next to use generate a three-dimensional model of a scene,
this model to reduce the background to a relatively given two or more images that have been taken from
homogeneous field in which anomalous objects (i.e., different perspectives. There are at present two
those that occlude the nominal road surface) are techniques for automatic stereo matching:
eanily detected, and, finally, to inspect and correlation area matching and low-level feature
classify the detected objects. Figure 2 shows an matching. Each of these has both appropriate and
example of the steps in this process; a summary of inappropriate scene domains. Interestingly, many
the ,ork is contained in Reference (9]. of the domains where correlation performs well are

those in which feature matching perform po)orly,
and vice verta [10]. Firthermore, none of the

A. Reiearch in Image Matchin. current matching techniques makes use of th4c
physical constraints that result from knowledge of

Image matching is one of the broadest and most the illumination source, the photometric properties
basic ope\-ations in scene analysis. Our current of surfaces, and the geometric properties of
work in thts area is concerned primarily with natural and cultural objects. We are investigating
putting an image into correspoudence with an new techniques that can smoothly combine several
existing dat.a base. This i3 a requireuent for enisting matching te,:hniques to exploit aivailable
almost all c.irtographic and "knowledge-based" Image physical constraints and, thus attain levels of
interpretaticn applications and is the essential matching performance impossible with any single
stcp in scene-based autonomous oavigat.on. A technique.
suwaary of our relevant contributions Ls contained
in Reference (41 and (8]. Major improvements of the feature-based

approaches should result from increasing the number
lu Refecenci, [81 we introduced a new paradigm of semantic labels in the classification of edges

(ItANSAC) for fittIng a model to experimental data. to include shadows, occluding contours, and changes
YANSAC is casable of irterpretIng/smoothing data in orientation of a photometrically uniform
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surfaces, as well as from using the physical REFBRENCES
constraints between labels to guide the matching
pocese (relaxation schemas will be used here).
Similarly, improvements in area-based (correlation)
approaches should result fror combining stereo 1. ii. 0. Barrow, at al., "Interactive Aide for
anomaly detection with the matching process to do a Cartography and Photo Intarpretationi Progress
more effective job of geometrically shaping and laport, October 1977," in Proceedins: Inaeo
warping the correlation windows (e.g., avoid having Understanding Workst•oy pp. 111-127 (October
a correlation window overlap an occlusion edge). 1977).

An approach to the integration of feature- and
area-based stereo techniques is to first decompose 2. M. A. Fischler, et al., "Interactive Aids for
the images into regions according to local Cartography and Photo Interpretation,"
properties that affect the performance of the Semiannual Technical Report, SRI Project 5300,
various matching techniques. For instance, regions SRI International, Menlo Park, California
that are photometrically uniform and have distinct (October 1978 and May 1979).
boundaries are obvious choices for edae-based
stereo techniques, whereas highly textured areas
might be better suited to area-based methods. 1. ;,. Quam, "Road Tracking and Anomaly

Zatection," in Proceedings: Image
Stereo Modeling Understanding Workshop, pp. 51-55 (May 1978).

In real-world scenes, which contain such
complex 3-D structures as groups of buildings, 4. R. C. Bolles, at al., "The SRI Road Expert:
trees, and other elevated objects, there will Image-to-Database Correspondence," in
always be portions of the imagery that cannot be Proceedings: Imale Understanding Worksh.n,
matched because of occlusion, excessive perspective pp. 163-174 (November 1978).
distortion, and temporal changes in the scene.
These areas will be referred to as stereo matching
anomalies. In many cases the existence of stereo 5. G. J. Agin, 'Tnowledge-Based Detection and
matching anomalies can provide a cue to the Classification of Vehicles and Other Objects
presence of raised objects. Our research goal is in Aerial Road Images," in Proceedings: Image
to classify these stereo anomalies using supporting Understanding Workshop, pp. 66-71 (April
evidence from other cues, such as shadows and 1979).
monocular features.

We are considering a number of possible 6. 1. - Fischler, J. M. Tenenbaum, and
approaches to raised-object cueing. The existence H. C. Wolf, "Vetection of Roads and Linear
of a stereo anomaly might trigger a search to find Structures in Aerial Imagery," in Proceedings:
a shadow consistent with the illumination geometry Imge Understanding Workshop, (November 1979).

=•and the geometry of the underlying terrain. 4 -4

" Alternatively, knowledge of the illumination
geometry and the underlying terrain might be used 7. M. A. Fischler, "The SRI Image Understanding
to guide a highly selective, monocular search for Program," in rroceadin•s: Imana YThderstandiys
shadow edges, which in turn would guide a search Workshop (November 1979).
for anomalies in stereo matching. In addition to
the above, we are also developing techniques for
recogniziug the presence of occlusion edges In 8. M. A. Fischler and R. C. Bolles, "Random
single black and white images that could provide Sample Cousensus: A Paradigm for Model Fitting
guidance for the stereo modeling system. with Ak,ýlications ý:o Image Analysis and

Automated Cartography," in Proieedin: kv%0)
UnderstandCna Workshyop (April 1980)o
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APPENDIX immediate goal of the testbed is to explore
applications of direct relevance to automated

ARPA/DMA IMAGE UNDERSTANDING TESTBED PLAN cartography, the ultimate results may be of
interest to a far larger commuanity.

SUMMARY: We present a plan for the activities

supporting the ARPA/DMA Image Understanding
Testbed. A detailed schedule is given for the B. Progress
second half of FY81, together with an outline for
the FY82 activities. The testbed efforts SRI International was selected as the
concentrate on three main areas: 1) the development integrating contractor to implement the teetbed
of a software and hardware environment to support system. Over this past year the SRI vision group
the requirements of the contributid software has carried out the definition, planning, and
modules; 2) acquisition and integration of the facility implementation tasks of the testbed
contributions; and 3) demonstration, testing and design. A basic configuration of hardware and
evaluation of the image understanding research software has been established that now forms the
contributions, core of the testbed facility. In the following

paragraphs we describe the hardware, system
TABLE OF CONTENTS software, and language utilities currently

available to support testbed activities.
I .... OVERVIEW OF THE IMAGE UNDERSTANDING TESTBED

A.. .Background
B...?rogress 1. Hardware ConfiRuration

1. Hardware Configuration
2. Operating System Facilitieiý The principal elements of the current
3. Language Support testbed hardware configuration are a DEC VAX-11/780

C... Planned Activities central processing unit and a DeAnza refreshed-
raster- scan display system.

II...PROJECT PLAN FOR SECOND HALF OF
FISCAL YEAR 1901 The DEC KL-10 central processing unit is

A... Overview also accessible from the testbed VAX, using a
B.. .Development of System Software, teletype line for communication and a shared disk

Hardware and Documentation drive for file transfer. Programs on the KL-1O can
1. Software Development access the DeAnza display system through the VAX as
2. Hardware Acquisition an intermediary employing this same communication

and Integration system.
3. Documentation

C...Acquisition and Integration of The VAX is a four-megabyte system with
Contributions one tape drive, two RPO6 disk drives (one shared

D ... Demonstration, Testing, and Evaluation with the KL-1.0), and 16 teletype lines. The VAX
of Contributions interfaces directly wich a variety of terminals, a

digitizing table, a menu tablet, and a DEC PDP-
III..PROJECT PLAN FOR FISCAL YEAR 1982 11/34 minicomputer that controls the DeAnza display

system directly.

IV...STATUS AND PLANS FOR SPECIFIC CONTRIBUTIONS
V .... CnNCLUDING REMARKS The DeAnza refreshed-raster-scan display

system has a resolution of 512 x 512, with 32 bits
of information per pixel. Eight bits each are
allocated to red, green, and blue data; in
addition, there are eight overlay planes. Each

I OVERVIEW OF THE IMAGE UNDERSTANDING TESTBED group of eight bits has its own lookup table. The
output of the four lookup tables can be combined in
a variety of ways to provide input to the system's

A. Background eight DACa. Ordinarily, three DACs drive one RGB
monitor, three drive a second color monitor, and

APPA has for many years been a primary sponsor the remaining two DACs drive two monochrowe
of basic research in computer vision. TLes support monitors. However, a special crcssbar arrangement
vis consolidated in 1975 into a broadly baced has been designed and built to alluw the DeAnza bit
research program in image understandiig (IU), the planes to be allocated dynamically among our two
goal of which was to explore fuudamenzal coaputer color mohitors and up to eight monochrome monitors
vision techniques that could be applicable to located with terminals throughout the sits. All
military image interpretation tas's. DeAnza graphics optrations are carr-ed out by the

PDP-11/34 under the direction of the VAX.
The IU research program has now produced a

substantial body of results thnt have considerable
potential for near-term application, To provide a 2. Operating System Facilities
framework for demonstrating some of these
capabilities, ARPA and DMAhava agreed Jointly to The testbed system runs under the UNIX
support development of a demonstration sysLem, the operating system, which is currently available on
ARPA/DMA Image Understanding Testbed. While the the SRI VAX through an interfacing software package

(developed at SRI) called "EUNICE."
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The KL-10 presently aseociat-A with the The demonstration, testing, and evaluation
testbed VAX runs under the OPS-20 operating procedures for contributed modules are currently
system; this facility is available to run being developed. As an initial t,tep, we are
xappli%:ation program developed prior to the undertaking a study of the funda-emnal functional
initiation of the testbed effort. areas and paradigm of IU research. The first such

area being studied is stereographic systems. A
paper on the state of the art of IU stereo modules

3. Language ISp 2  is being prepared and will be presented at the
April 1981 Image Understanding Workshop. As the

High-level programmiAg languages teetbed progresses, analyses of various IU areas
currL-tly available on the testbed VAX are and plans for appropriately demonstrating their
MAINSMIL, FR.NZLISP, and C. Extensive graphics capabilities will be developed regularly.
functions are currently available from MAINSAIL,
which is a high-performence ALGOL-like language The teetbed program will be implemented
similar to the SAIL language available on PDP-10 primarily by a team consisting of the testbed
computers ("MAINSAIL" is derived from "MAchine coordinator, the testbed system programmer, and a
INdependent SAIL"). MAINSAIL is currently person with a vision research background who will
available on the PDP-IO under TOPS-20 and on the play a major role in the integration of contributed
VAX under either VMS or UNIX. FRANZLISP, a variant modules. These personnel will be assisted by
of LISP, was developed at U.C. Berkeley; it is members of the SRI vision research group, as well
written almost entirely in C and Is intended to run as by consultants from testbed contributor sites.
with the UNIX operating system (it runs under In particular, research personnel are expected to
EUNICE on the teetbed VAX). The teetbed graphics play a substantial role in formulating the test and
capabilities are currently being extended to evaluation plans and procedures for contributed
include C and FRANZLISP. modules.

The languages MAINSAIL, SAIL, and MACLISP
are supported on the KL-lO. Graphics functions are
accessible by using MAINSAIL on the KL-10 to send
directives through the VAX. II PROJECT PLAN FOR THE SECOND HALF OF FY81

C. Planned Activities A. Overview

Activities designed to fulfill the goals of Now that a basic testbeu system concept has
the Image Understanding Testbed project will fall been established, the testbed must be evolved to
into three major categories; development of system accommodate the requirements of the software
features and documentation; acquisition and contributions anticipated from the other testbed
integration of contributed image understanding participants. The proposed contributions must be
modules, and the demonstration, testing and examined and selections made. Consulting
evaluation of the image understanding research assistance by the original authors must be made
contributions. available, if possible, to help identify the

critical issues involved in adapting each
The testbed hardware and software contribution to the testbed envtronment. As the

configuration will be enhanced to establish a list of nominal contributions is developed, they
powerful, self-contained systim for demonstrating will be brought into the testbed and integrated
the results of image understanding research. An into its environment. The knowledge required to
effort will be made to configure the system so that carry out the module integration task is still
similar systems could easily be duplicated at other being acquired. Thus, the actual instantiation of
sites. A full set of documentation describing the the testbed will probably differ somewhat from the
testbed configuration and its use will be plans presented here.
generated. The documentation will include a user's
manual, a description of the hardware and s;,ftware While the contributions are being integrated,
of the testbed environment, a catalog of the we shall also be evaluating the state of the art of
supported contributions, and a catalog of the in selected areas of image understanding. This
available test imagery. The documentation for the activity will provide an essential basis both for
basic utility packages will establish community- the decisions to acquire specific modules and for
wide standards for thb image understanding software the later task of evaluating the image
environment in C, FRANZLISP and MAINSAIL. understanding research results. The ultimate goal

is to develop a comprehensive picture of the nature
Image understanding modules will be proposed and capabilities of the major areas of the image

by each of the IU reaearch groups and evaluated understanding research program.
with respect to their suitability for the testbed.
Those modules that are appropriate for a particular Table I contains a list of the major
stage of deqelopment will. be acquired. The support anticipated activities and milestones of the
structure required by a given module will be Testbed project.
analyzed and the module integrated into the testbed
System.
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1. Software Develonmp t

Table 1 OPERATING SYSTEM ENVIRONMENT

The IU modules contributed to the testbed
TESTBED ACTIVITIES AND MILESTONES will be written in a variety of languages and will

be designed for several different environments.
The teastbed development plan is centered on a UNIX-
based environment supporting the languages C,

ACTIVITY BEGIN END FRANZLISP, and MAINSAIL. A number of system
(-.- - gonoing software task@ will be undertaken to support the
activity) contributed modules. For example, we shall

establish a set of basic software
SYSTEM DEVELOPMENT intercommnication capabilities; the objective is
"<software> to make it very easy for programs written in

Operating System Environment in progress -- different languages, such as C and FRANZLISP, to
Graphics and function cooperatively in an interactive

Image Access Utilities 2/81 7/81 etivironment. Communication facilities will also be
User Interface 4/81 1/82 established to allow interaction with other

computer systems, such as the EL-10 and LISP
<hardware> Machines. Improvements in basic system utilities

Image Scanneir 12/80 3/81 will be made as the need arises.
Display 3/81 7/81
Lisp Machines 8/81 10/81 A software documentation system will be
Other Hardware 3/81 11/81 established that provides a framework for creating

documentation in a standardized format. The
<documentation> documentation entered in this fashion will be

Plans and Presentations 11/80 -- entered into a database and we will be retrievable
System Environment 11/80 -- by a suitable documentation access system.
Graphics and Image

Access Standards 6/81 8/81 GRAPHICS AND IMAGE ACCESS UTILITIES
User's Manual 8/81 10/81
Contribution and A standard set of graphics and image

Image Catalog 6/81 -- access utilities form a critical central part of
the testbed environment. These are the tools that

ACQUISITION AND INTEGRATION OF CONTRIBUTIONS enable the rest of the IU modules to work together
Definition in progress -- in an efficient way. Parallel sets of graphics
Evaluation and helection in progress -- utilities with essentially the same capabilities
Acquisition 3/81 -- will be written in C, in FRANZLISP and in MAINSAIL
Testing and Modification 3/81 -- to allow access to the graphics in all supported
Integration 5/81 testbed languages. Image file access will be
Test Image Acquisition in progress -supported by parallel utilities in MAINSAIL, C, and

• PRANZLISP, so that image files can be accessed and

DEMONSTRATION, TESTING, AND manipulated in all of the supported testbed
EVALUATION OF CONTRIBUTIONS languages. The identification, labeling and
Develop Scientific retrieval of image data will be supported by an

Overview 1/81 4/82 image retrieval database system. We are
Establish Test and considering modeling the image database system on

Evaluation "tans 6/81 4/82 the HAWKEYE project previously undertaken at SRI.
Demonstration of

Contributions 6/81 -- USER INTERFACE
Evaluation and

Comparison Tasks 10/81 -- The testbed will support a standard
interactive user interface to allow demonstration
of and experimentation with all of the teetbed

B. Development of System Software. Hardware end capabilities. The user interface will be a
Donumentation powerful tool enabling exhaustive testing and

evaluation of the contributed sodules. The testbed
The teatbed system environment will be user interface is eurrently envisioned as a LISP-

extended in a variety of waya durinE the remainder based set of interactive utilities that can be
of this funding period. The purpose of these invoked either in immediate execution mode or from
enhancements will be to provide support to n stored executive file. Prearranged
facilitate evaluation of the contributed image demonutrations can be assembled in the form of a
understanding modules. The anticipated testbed deferred execution file. Experimental evaluation
system activities during the rest of FY81 may be can be carried out in the lnteractive mode. Where
grouped into three subcategories: software tasks, appropriate, keyboard command entry wiil be
hardware tasks, and documentation tasks. These supplemented by the option of enterin& commands and
tasks will be planned by the teetbed coordinator command parameters by means of a pointing device,
and carried out by all testbed personnel, such as a digitizing tablet. For example, a tablet
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would naturally be used for pointing to delimiting enhanced graphics system plays a critical role in
boundaries inside an existing display while a user allowing the teetbed configuration to meet these
was defining a new, magnified display. goals.

The contributions of image understanding LISP MACHINES
research software would be organized into a
documented database structure of their own. This A number of highly desirable image
system would contain within it predefined understanding contributions are coded in LISP-
demonstrations of each module's capabilities. Rachine 71SP and run properly only on the KIT

"CADI" LISP machines. To take full advantage of

the capabilities of the MIT contributions and to
2. Hardware Acquisition And Integration accommodate later contributions that may be coded

in LISP-Machine LISP, it would be highly desirable
Additional hardware will be acquired to to install at least two LISP Machines as part of

enhance the present capabilities and to support all the teatbed hardware configuration. These machines
the requirements of the testbed. The testbed would operate as independent processors for
hardware will be integrated into the system, intensive LISP calculations, thus relieving the VAX
together with the required software support and of the substantial processing load required to
utilities necessary to make use of it. Listed service such computations. The LISP machines would
below are the major item of teetbed hardware to be comunnicate with the VAX via the Ethernet high-
incorporated into the system during the coming bandwidth network, using existing software that is
year. available for the LISP Machines.

HIGH-RESOLUTION IMAGE SCANNER OTHER HARDWARE

The testbed will acquire and integrate a The teatbed will acquire and integrate
high-resolution opticaX scanner for the purposes of three new high-capacity disk drives. The
digitizing film images. The scanner's basic additional disk drives will be used to replace the
capabilities will be to digitize film images of up shared drive that is being lost and to increase the
to 10 x 10 inches at a resolution approaching that system's apacity to support a substantial number
of the film grain, approximately 10 microns. A of user3 and their test imagery.
high level of geometric precision will be provided.
The photometric range will include 8 bits of A high-quality film hard-copy device for
monochrom- and up te 8 bits each for red/greea/blue photographing intermediate and final results of
scans z , r imagery. The scanner will support a image understanding computations would be a highly
varik" of functions. First, it will allow tertbed desirable addition to the testbed hardware system.

visaf. . bring t-' tr own test data in the form Consequently, i' will be added to the system
of -, rzey, .. tize the data on the sVot, and whenever appropriate funding is available.
Lh, - given AoduLe on their own data. Second,
the iner will provide a vital opportunity for Communication with other computer systems
exper.?ienting with imagery digitized under and peripherals will be essential to satisfactory
controlled conditions; testbed algorithms can then operation of the system. We have already begun
be evaluated with respect to their sensitivity to a installing an Ethernet network on the Unibus of the
variety of factors in the image digitization testbed VAX. High-speed communication channels
process. Finally, the scanner will support the will be established using the Ethernet to
geometric precision and photometric accuracy communicate with other VAUs, the KL-10, the 2060,
required to carry out stereo mapping functions, and the LISP Machines.
shadow identification and raised-object
identification; previous vidicon-based digitizing
systems have proven completelv inadequate for these 3. Documentation
purposes.

The establishment of a full set of
GRAPHICS DISPLAi SYSTEM documentation describing all aspects of the image

underutanding testbed system will be a critical
A refreshed-raster-scan graphics display part of the testbed project. Among the specific

system compatible with a majority of the testbed documentation tasks that mast be Included in the
contributors systems will be added to the testbed testhbed plan are the generation of testbed
system. The graphics system - extend the proposals, plans, and reports, the preparation of
capabilities of the testbed g cs, so that informational presentations, descriptions of the
existing contributed softwa .. be integrated testbed hardware and software environment, and
more easily into the system. Since the current descriptions of both the scientific and user-
testbed graphics system is a specially modified related properties of the contributed testbed
research system developed at SRI, it will be highly modules.
beneficial to the teatbed to have a standardized
system of its own that can be easily duplicated and PROJECT DOCUMENTATION------------------
maintained. One of the tentative goals of the
teatbed project is to develop a transportable and PROJECT PLANS
universally duplicable system with capabilities
adequate for all image understanding tasks. The
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Project plans detailing the anticipated be generated as an integral part of the teatbed
development of the teetbed will he prepared as system. The MAINSAIL documentation is in progress,
required. The plan presented in this document is while the C and FRANZLISP documentation w~ll be
the first detailed plan attempted for the testbed generated conciirrently with the software.
project as a whole, As the tootbed evolves and
changes, the project plan will be updated So far as is practical, a universal set
accordingly. of teotbed Image access staudards will be created

that all contributions will use for image access.
PROJECT PRESENTATIONS The tootbed image function documentation will

establish this de facto standard.
Periodically the status of the teatbed

must be formally presented to such groups as the USER'S MANNUAL
Teetbed Steering Committee and the IU principal
investigators. These project presentations will be The testbed user interface system will be

developed as required to commaunicate information described in a detailed testbed system user's
regarding testbed activities to concerned parties. wanual. The user's manual will conyain a brief

overview of the tootbed system hardvare and
SYSTEM DOCL .NTATION------------------------------ software configuration, together with instructions

for uping the entire system from within the user
HARDWARE ENVIRONMENT interface shell. The methods and utilities

available for carrying out testing and evaluation
A succinct but comprehensive description procedures will be described in detail. Basic

of the present testbed hardware configuration is instructions for using the program development
now available. This document will be expanded and environment will be supplied together with pointers
updated as the testbed hardware configuration and to more complete documentation. The user's manual
critical information about the configuration are will also indicate how to use the on-line
changed. Further diagrame and details of tho documentation to obtain more information about
system hardware usage will be added to improve the specific contributions and their usage within the
utility of the existing descriptions. teetbed context.

SOFTWARE DEVELOPMENT ENVIRONMENT TESTBED CATALOGS-------------------

A brief description of the present CONTRIBUTION CATALOG
testbed system software development envLrunment is

currently available. As additional utilities and The capabilities and image understanding
support software become available or are generated research modules available on the testbed will be
for the testbed, a sore comprehensive documentation fully documented. A contribution catalog will be
scheme for the testbed will be established. An established on line to allow quick access to
indexed set of documentation describing the basic essential documentation describing thu use of the
software characteristics of the teetbed environment contributed modules. Each contribution will be
will be generated and periodically updated when described both in terms of its scientific corntent
appropriate. and its practical usage. A series of pouaters will

be set up among related routines, as wed as among
GRAPHICS STANDARDS those that can be used couperatively in some

fashion.
All graphics manipulation functions will

be available with three alternative environments - TEST IMAGE CATALOG
MAINSAIL, C, and FRANZLISP. A set of documents
describing the available testbed graphics The test image catalog will be an
functions, their parameters, and their usage will essential part of the testbed systam's on-line
be generated as an integral part of the teetbad documentation. It will contain both human-readable
system. The MAINSAIL documentation is in progress, pointers to test data falling into various H
while the C and FRANZLISP documentation will be categories and m&chine-readable pointers that
generated concurrently with the relevant utility enable the user to select particular types and
software. instances of test data with minimum knowledge about

the explicit file structures involved. The test
So far as is practical, a universal set image catalog will work in concert with the test

of testbed graphics standards will be created that image database system to form a total environment 4
all contributions will use for graphics access. that is tentatively based on the SRI Hawkeye image
The teetbed graphics function docusmeiation will database aystem.
establish this de facto standard.

IMAGE ACCESS STANDARDS C. Acquisition and Integration of Contributions I
All image access functions will be A major portion of the testbed effort over

available in three alternative environments - the next year and a half will be devoted to
MAINSAIL, C, and FRANZLISP. A set of documents acquiring image understanding contributiona from
describing the available testbed image access the other t&mtbed contributors at Carnegie-Mellon,
utilities, their parameters, and their ueage will MIT, Stanford, Rochester, Maryland, and the
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University of Southern California. After the INTEGLAT7ON
acquire( nodules have been integrated into the
teetbed system, they will be tested, demonstrated, When a contributed module is aitffitently well
a.m valuilted to weish their technical merits. The understood so that its entire support e'ructure has
sequence of procedures we plan to follow while been properly implemented in the testbed
adding contributed modules to the testbed system is environment, the module can be integrated into the
listed below. The acquisition and integration of teetbed system itself. At this stage each
contributed modules will be planned by the testbed contribution will be added to the list of processes
coordinator and carried out by testbed persounel that can be interactively invoked and experimented
.tith substantial assistance frod home site with on the teetbed. Appropriate ways of passing
coast.ltants, data to the module from the interactive environment

will be established and documented and, when
DEFINITION desireble, interfaces to other modules will be put

in place. One or more test caser will be set up to
Contributors have been asked to describe their demonstrate the capabill.ties of each modnle.

proposed modules in detail, This information
%ho-ild to give testbed planners a sufficiently
accurate picture of the capabilities and degroe of D. Demonstration. Testine. and Evaluation of
completeness of the proposed modules. Contributions

SELECTION The primary scientilic task of the testbed is
the evaluation of the contributed image

Proposed modules that both the contributing underftanding research modules in a uniform
organization and the testbed staff consider context. This task will be broken down into a
pot-entially suitable for inclusion in the testbed number of distinct stages. SRI testbed and
will be eval!ated more intensively. Most or all research staff will cooperate in d-veloping a
such modules will be demonstrated at their home scientific overview of the state o& the art of
site to determine .heir capabilities, degree of image understanding research. From this work will
portability, and desirability. Possible problems com- a more detailed plon for testing and
in transferring the modules to the testbed evaluating tne contrlbut'Vd modules. The actual
environment will be discussed in detail. demonstration, testing, and evaluation of the image
Qualifying modules will then be selected for understanding research contributions will be based
inclusion in the testbed aystem. on that plan and will be carried out primari•.y by

the teetbed personnel.
The qualification and selection procedurn will

be carried out In stages. Small, simple modules SCIENTIFIC OVERVIEW
will be preferred at first. As the teetbed
software enviroment is enhanced to accommodate the A scientific overview of the state of the art
requirements of the initial modules, it will benome of image understanding resebrch will be dove.Loped

easier t•c support more complex contributions. In with the participation of image understanding
addition, modules that were still incompletely researchers from the commnity of teatbed
implemented during the early stages of the module contributors. The baric IU paradigm will be
acquisition process will gradually be completed. identified, the nature of the IU rescarch
As this is accomplished, adlitional contributionc contributions to eaci area described, and
will be qualified for inclusion in the testbed. appropriate test domains noted. This grocrss will

result in a series af scientific papars reviewing
ACQUISITION and evaluating the status of the major IU

ftinctional areas. The following areas have
Modules that are selected for inclusion in the tentatively been identified for this activity:

testbed at any given staga will be prepared by the
contributor for transport to the testbed. )n many * Stereographic reconstructiou
cases, this praparation will be sufticiently
difficult that software consultants familiar with * Linear feature analysis
the contribution and ias structure may visit the
teetbed site in person to assist in making that * Image matching
contribution operational. Acquisition of a given
contributed module will include as mich support * Pattern recognition and segmentation
software as is practical.

* Miscellaneous (including sensor prediction, 4
TEST AND MODIFY texture analysis, shape from shading, etc.)

Acquired image undarstanding modules will be ESTABLISHING THE TEST AND EVALUATION PLAN
tested and modified to fit into the teitbed
environment. When necessary, consultants from the As the scientific overview is developed, w•
respective nodule development s'tes will be shall formulate a strategy far testing end
employed t3 carry out this proctidure efficiently. evaluating the IU contributions in each of the
This activity is the essential prerequisite to major technical are"s. A plan will be proposed for
integrating the contribution into the teathad carrying out the evaluation procedure. Testing
system. methods will be proposed and specific evaluation
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measures suggested. Appropriate domains of test testbed contribution evaluation program. As the
ata will be determined for each of the functional library of image understanding boftware supported

areas, as well as for the corresponding by the testbed grw.s, the scientific overview and
contributions, the evaluation plan will be extended and modified.

Additional snientific reports will be generated to
DEMONSTRATION OF CONTRIBUTIONS evaluate the state of the art of the image

understanding field and to point out areas of
When a contributed image understanding module strength and weakness. These results will help to

has been fully integrated into the teetbed system, clarify the particular modules that should be
it will be added to the set of testbed supported by the teetbed, as well as to pinpoint
demonstration packages. Facilities will be ares in which additional work and research would
est.blished to use the module not only with special be warranted.
test casso, but also t.ith any set of test data the
user wishes to try. Home site consultants may The tasks invol,.ed in the demonstration,
again be used at thiv time to optimize the quality testing, and evaluation of contributed modules
of the demonstrations, (described in the preceding section) will b4

continued and extended. In particular, strategies
E;'LUATION AND COMPARISON will be developed for demonstrating the

capabilities of each module and the modules will be
The final step in the testbed program will be tested and evaluated with respect to their relative

ý:o -r'aliate completely integrated image performance and scientific merits. The principal
Lnd:tstanding modules according to the test and contents of the final report rlating to testbed
evit.nation plan. When possible, similar modules activities will be a detailed description of the
will be compared w2.th one another. Further work results of the evaluation procedure.
will be done to determine which measur,'s are
appropriate for the evaluation of particular
modules, which image domains are appropriate, and
which imagery is representative of these domains.
All conclusions and results oi the evaluation IV STATUS AND PLANS FOR SPECIFIC CONTRIBUTIONS
procedure will be fully documented.

The purpose of this section is to present a
summary of the specific image understanding
research contributions that are expected to become

III PROJECT PLAN FOR FISCAL YEAR 1982 a part of the teetbed system. Each contributor has
provided the testbed staff with a list of proposed
modules and a description of their characteristics.

The ioajer teatbed tystem tasks during the These specific descriptions of what eacn
second half of FY81 involve improvements in the contributor could provide have beena collected in a

tostbed environment, integrati.on of contribtted computer file for reference. While the contents of
s~ftware, and the establishment of a plan for this lengthy file will not be included here, we
evaluating contributed modules. Additional plan to compile an appropriat,,lv edited version
hardware is scheduled to be itcorporated into the containing a full, description of each contribution
system and the software utilities will be actually received by the testbed.
substantially extended. An initial set of image
understanding rcmearch contribitions will be Each contributor has been contacted and asked
acquired and the teetbed envirinment prepared to to furnish information regarding the most
support them as they are integrated into the appropriate initial contribution from that
oystem. The state of the art of image contributor's site. The proposed contributions are
understanding research will be etermined and a being evaluated and are being prepared by the
coordinated plan for testing avý evaluati-ag the contributors for transport to the testbed. The
contributed modules will be foimulated. contributors have also provided information on the

contributions they anticipate having ready before
The specific tasks to be carried out in FY82 the end of FY82. In Table 2 we summarize the

depend largely on •he manner in which dhe project presently planned contributions to the teatbed from
developo during the remainder of FY81. However, each partiuipant. The degree of the contributor's
many of the activities anticipated for FY82 will commitment to providing each given module is
clearly be extensions of those begun earlier, indicated, along with approximate dates for the
Tasks sterted in FY81 will be further defined and prospective acquisition of the module and its
brought to complation in FY82. Segments of the integration into the tostbed system.
system will be redesigned and improved when
necessary. Obviously, the system requirements will The preferable form of the delivered
have to be redefined as the testbed staff and users contributions would be in one of the languages
gain experience with the system. supported on the testbed VAX. Initial

contributions will be analyzed from the standpoint
The general thrust of testbed activities in of their support requirements and an appropriate

FY82 will be to acquire, integrate, and evaluate a set of graphics and image access standards will be
substantial additional number of contributed image formulated. While several attempts to define
understanding research results and to complete the testbed standards have already been attempted, the
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govern difficulties encountered in establishingTable 2ideal standards have indicated that they are beat

developed in an iterative fashion on the basia of

existing software. Thus, the initial contributions
SU'I,,tRY OF COITTRIBUTTONS AND CCNTRIBUTION SCHEDULE will help define the standards to be followed in

later contributioos and in later versions of the

initial contributions. We shall depend upon song
CONTRIUUTI3N COIOITMITNT ACQUISITION INTrGRATION support from each contributing institution to aid

in fitting the contributions into a uniform
environment.SRI

Road Expert firm complete 5/81 The scientific context of each of the
RAIISAC firm complete 5/81 contributed modules will be defined by the

scientific overview papers mentioned in Section i-C0U (ist:2nd (last2nd D. Tha evaluation procedi t:n: and criteria oo be
version) version) used in the scientific assessment of each module's

Segmentation firm 4/81:9/81 6/8112/81 capabilities will be derivud from the basic
Intervisibility likely 6/81:9/81 9/81:12/81 material in those papers. The appropriate data
Stereo (Moravec) likely 8/81:12/81 1'r.81;3/82 sets to be used tn testing the contributions will

also be characterised in the overviews. The final
STANFORD output of the teatbed will be a systseatic

(Stereo evaluation and characterisation of the merits of
- se* CKU] (firm] 08/81] (3/82] each contribution, together with an environment in

Camera Solver and which the cnvtributions can be flexibly tested and
3D Obuatacla Finder demonstrated.

(Cennery) likely 6/81 10/81
Line Finder likely 6/81 11/81
ACRONYM likely 4/82 6/82 VII CONCLUDING REMARKS

MARYLAND
Relaxation fi.m 3/81 5/81 The image understanding testbed will establish
Interactive Segmentation a standard environment in which the image

Package possible 9/81 12/81 understanding research modules can be tested and
evaluated. A variety of IU research results,

ROCHESTE.R implemented in the teatbed system, will be
Hough Transform firm 6/81 8/81 acceslible for evaluation and comparison. Once in
Strip Trees possible 10/81 12/81 placc, the teetbed will form a framevork which

other concerned parties, such as the Defense

MIT Mapping Agency, can uce to adapt image

(Require MIT LISP understanding research capabilities to their owv
Machine] likely 8/81 10/81 specific applications.

Stereo (Marr) o o

Shape-,from-Shad.ng "

USC
Linear Features likely available 9/81S~in SAIL
Law's Texture

Analysis likely available 12/81
in SAIL

Emage-to-Map
Correspondence likely available 4/82

in SAIL
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(b) BRIGHT POINTS IN BINARY MASK SNOW WHERE IMAGES HAVE "RIVER-LIKE" APPEARANCE

Ik• -

(c) RIVER DE (ECTION MASK OVERLAID ON ORIGINAL IMAGES

FIGURE 1 DETECTING AND DELINEAT!NG RIVERS IN AERIAL IMAGERY
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(a) ROAD SEGMENT TO BE MONITORED Wb STRAIGHTENED, INTENSITY Wc DETECTED ANOMALIES
MARKED IN BLACK NORMALIZED ROAD MARKED IN SLACK

SEGMENT

S10

I

(W R BOXES PLACED AROUND POTENTIAL VEHICLES (a) ANOMALIES CLASSIFIED (LABELED)

FIGURE 2 ROAD DOMAIN ANOMALY DETECTION AND CLASSIFICATION
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SPATIAL UNDERSTANDING
Thomas 0. Binford

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

Abstract

in an operational setting. Now, basA,,d on recent progress,
The ACRONYM system has been extended greatly over we see perceptual components and an integrated system

the past year. It proved successful in preliminary tests in whose perfo;'mance within the short term will 'e
identifying aircraft. ACRONYM is dcmain-independent; its striking by r.urrent standards. Defense applications of
knowledge of aircraft is in the form of models. None of its image understanding are rmally quite difficult and demvid
rules and perceptual mechanisms are specialized to that level of performance; automating stereo compilation
aircraft, for building complexes and cultural sites; automating

Progress has been made in stereo vision in geometric t-lasrification tasks of photointerpreters; guidance and
constraints for general surfaces and for special surfaces, targeting. We set a short tVrm objective of demonstratirg
General neW theoretical results on understanding line intnresting performance in example tasks, performance
drawings in images appear ap.y.iable to solids with adequate to se a clear path to explnit image
curved surfaCe.- with surface markings 3nd shadows, understandfing technology for carefully selected high
with paper, and wires. In an example, a three-spaci model perfor-mance systems
is built up of an aircraft from a single view, using general
constraints with no knowledge of the object or surfaces..A CR0NY[
The system identifies shadows and uses them to infer the

height of surfaces. Several new constraints on
correspondence of edges have been dis-overed and ACRONYM is a perceptual system with geometric
incorporated in stereo matching. Two reults relevant to modeling and geometric reasoning in the form of a
biological vision systems are fcand to agree with powerful problem-solving system (Brooks 79]. Several

experimont, objectives have influenced the design oZ ACRONYM.
Concerning special surfaces, preliminary results are ACRONYM should be natural to program; itis programmed

reported for monocular constraints on appearan..e of from gton.etric models. ACRONYM should incorporate all
available knowledge and information; it maps knowledgeorthogonal trihed rpI vertices In image sequences, and data into geometric constraints or. various geometric

structures of a geometric representation hierarchy.Introduction ACRONYM should be capable of perception without
knowledge of viewpoint; it has viewpoint-independent

Our research program focusses on the ACRONYM volume models.
system for perception and planning action in the real In ACRONYM, objects are represented as part-whole
woild. ACRONYM integrates perceptual algorithms in a graphs whose primitives are generalized cylinders. One
total system which interprets images as spatial structures objective of research is to provide means for representing
in three-space. Our interest in building a total system is to object classes and identifying them. Thus, ACRONYM has
solve fundamental problems of iepresenting geometric models for passenger aircraft and models for L-10 11 and
structures and transformations. The offort in systems is 747 as aircraft. It has eucceeded in identifying 707's as
worthwhile, too, in pro riding an experimental system to aircraft without a model for the 70i. Typical systems
build on for further research. An essentiodl .art of the identify an aircraft by attempting separate identifications
research couples AC10ONYM to. real world inputs, by as an LiO ii, 747, or 707, without the least connection
developing fundamental algorithms for constructing armong them. In those systems, an L10 1I is no more and no
symbolic descriptions of irmages and sequences of images, less related to a 747 than to a car or tank. Generalized
and nmapping them to syinboltc descrfptionis of surfaces cylinders provide a means of generic representatio
and objects. (object classes) as abstract structures of volumes.

ACRONYM is the basis for performance systems in ACRONYM provides class restriction and quantifiers as
photainterpretation and cartography, systems which further machanisms for generic represntation. A
promise to be generalizable from a few specially chosen quautfier is a variable whose value is partially

examples in a research en.'ronment to realistic variation determined by a system of cornstraants. An LI0I 1 ir a
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resatr. ýt'ov, of the class passenger aircraft.
icsoks 79] described a first test of ACRONYM in

dl'kentifying an L-lOl from mn aerial photograph of San e
'Fr.ancisco airport. After a few such experiments,
extensions to ACRONYM were designed and implemented Performance of ACRONYM and stereo programs are

over the course of more than a year [Brooks 80). These both dependent on quality of symbolic descriptions of

extension introduced the major capability to extract three images as curves and ribbons. In the near future,
dimensional information from images. [Brooks 81] significautly improved curve descriptions are expected,
describes the first series of expe•iments testing the new [Binford 81] describes new theoretical results or

system. ACRONYM performed well with poor data from describing image boundaries, based on extension of thw
small images. At this point, the nujor limitation is the Binford-Horn line finder (Horn 72]. These results ha.le

rquality of th i symbolic descriptions it receives from edge not been implemented yet. An argument is mode tha
and ribbon finding programs. We used to say that even coarse-to-fine operation is not useful; that fine-to-coarse

though edge finders are weak, we can still see a lot in is preferable becaute the output of fine operators can be

those images, "why can't computers?'. That commaent is used to eliminate the effect of small detail from coarse

no longt r valid. In this case, ACRONYM understood p6or operators in a way that simple weighted averages

,r'; t '.?tl r than its author. Of course, he could do better (frequency filtering) cannot do. & conjecture was made
i 0ay-,.J.1, OWYM with the original image, instead of the about hunian performance on discriminating

Fa i,,tgf! data. ACRONYM decided from shape that one darker-va-lighter for two background areas with readily

aiti.mf; %.-is consiskent with L-1011 and two aircraft in discriminable fine texture. The contrast between the

the exuhnlo wern-- not 747s or L-101 is. It did not usesize, backgrounds is chosen to be smad so that the
alt :th Lijsh ACR0'iOA 'I con'cluded separately that they were discriminatien is possible only over large areas. The
too i r it 11 -,o be 7 I? ?.; it 'ihe other were an L- 1011. contrast and density of small features is chosen so that

PC t0i31YM lad mudels of aircraft, a camera model their aveiage intensity reverses the contrast between the
witl e) ev ation between 1000 and 12000 meters. It had two regions. rhe apparent result from a casual experiment
ver. littli information about expectebd apparent size. is that humans detect the di.ferr-nce between backgrounds
ACHO-4) M has no special knowledge of aerial scenes. All when the small features are discernable, and perceive the
its re le; are about geometry and algebraic manipulation, difference in the opposite sense when the small features
Its pe•f )rxance would be impressive if it were a special are not discernable. Allan Miller and Craig Rublee

progrm n divoted to aircraft. It is mere impressive that its synthesized the test images. The conclusion from this
MechIm.nsn .s have nothing to do with aircraft, only its experiment is that position-invariant operators cannot be
models. AC RONYM can be expected to perform well in used at the coarse level to explain human performance,

identJfy,.4 objects s-.tch as vehicles by substituting models -,d should not be used by machines. The operators
for vhicle s,c introduced in [Marr 77] are thus not adequate to explain

Extenmions to ACRONYMI included: generalization of human performaLce. That paper describes a solution to
the rule laaguage to simplify the rules and to allow rules directional boundary operators
to manipulate object graphs and prediction graphs, in (MacVicar-Whelan 81] describes a boundary finder

order to make control uniform; introduction of with sub-pixel accuracy. This is intended as a processor
quantifiers, as described above; introduction of constraint with intermediate performance requiring small
expressions involving variables; symbolic manipulation :.omputatiou. It is based on an approach similar to
and simpl:iflcation of geometric transforms; incorporation Binford-Hor-. LHorn 72] and [Marr 79].
and exteusion or a mechanism to test 3atisfiabilitt of [Miller 81] describes a VLSI implementation uf a
c.onstrainis; constraints as mechanisms for determining vision pro.essor. This i,- an initial step toward high

parameters of models from observations 4also [Lowe 80]); perfornmance computation of image features such as
prediction with pavameterized expressions; a rule-based boundaries.
matcher. Recent results suggest renewed support for the

ACRONclYM's sppriach in identifying aircraft is to following design of a vision systems determination of
make predictions about the appearance of aircraft, i.e. to image features with opeirators over a range of sizes; the
predict theit on a coarse level, fuselage and wings will be output of each size stage is used to remove boundaries for
observable., It predicts automatically image features and the image data input to the next coarser stage; geometric
relations which are invariant or quasi-invariant over grouping operations are performed on outputs of each
variations in the model and camera parameters. ACRONYM stage, including the finest; relatvely general, local
predicts shape as ribbtius and ellipses. ACRONYM's data are assumptions are used to infer edges of surfaces from image
ribbons found by a rilbon finder [Brooks 79bJ based on boundaries. This model was unpopular in 1970. It appears
output from the Nv:.• .aa and Babu edge finder [Nevatia ! stronger candidate now becaure boundary operators and

78]. ACRONYM uses it.; predictions !o analyze ribbons to grouping operators use similar mecnanisms which appear
select candidates fo;" a I rcraft. Matches of image features to promising for implementation in VLSI, and because of the
model features are r v1a esented by constraints, A constraint intro4laction of a general approach to interpretation of
satisfiability test rotiaoves inconsistent Interpretations. image tounddries (Binford 81].

Cons%. Alnts on lmagoe measurements partially determine
model parameters. TI ,, determination of model parameters Stereo Compila in
allows a further prtd:ction of fina detail, for example, S e o h ilation
prediction of engine ;,q¢s and horizontal stabilizers based
on the idextlfication ard location of an L-1Ol. Those The chief problem of stereo visiop is to find

predib*tions .4an be tested in order wo verify identification correspondences between areas and edges in one view, and

to much h igzie, detail., those in another vicw. There is only partial
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Lcorrespondence between the two views which differ coincidence. The approach begins by characterizing
because _f geometric differences, •,hz tometrlc differences, 3urfaces by their edgcxs and limbs, t~eo apparent edges. It

and physical changes from one photo to the next. Consider uses assumptions of general source position and generalSgeometric image correspondence, the map between two cbserver position to Identify evidence that certain edgesImages, which involves stretching, folding, and cutting, and surfaces intersect in lmace, and whether surfee are

corresponding to surface inclination, diso ratinuities in smooth at apparent edges. Whereu curves ac smooth at!tangent plane. and occlusion. Junctions, assume that #be surface Is smooth. Where
Muchwor ha ben drectd twar co repennca curves have breaks, assume th~at thle surface has a creame,

along epipolar lines in an imakei [Henderson'79]. Arnold i.e. discontinuotms tangent pk•ne.. In absence of other
and Binford show that there is & tight constraint on inkformation, if curves appear to Interset In an image, and i

corresponding edges [Arnold 80). For edges random~ly If their Inverse Image is sufficient~ly constrained, as un~a

distributed in direction, most edges vAiM ippear to have that they are the images of curves which intersect in
similar angles in two views, This constraint is restrictive space. The inverse image of a curve in an image is the set
for typical mapping sequences of aerial photos, it is very 0, rays in space (a surface) which project onto the curve.
tight for human stereo. Half wvidth at half maximum for (f surface markings are drawing.: of objects, they will
true matches is 9 degrees for human stereo at 1 foot. Ihese fool these interpretations, but whq riq shadows and surface
results have consequences for biological stereo vision markinls aren't constructed pervorsely, they -give no
which are consistent with experiment. [Nelson 77] report indication of solid objects. Whery shadows and surfa.es
half width at half maximum of 10-20 degrees for the cat. markings cross true edges, the tru,,a edge is unaffected, the
If randomly distributed -dges are mismatched, i.e. image of the edge is smooth. Thus the system infers that
different views correspond to different edges, they the surface is smooth along the shadow or surface mark.
correspond to a population of edges peaked along the lines These results are much more general that previous
of sight to the two cameras, theoretical studies ot Interpreta.' ion of line drawings

The constraint on edge angles relates isolated edges [Guzman 68, Huffman 71, Clowes 71, Waltz 72,
without relations between edges. The next level of Mackworth 7,, Turner 74]. A
constraint is that of surfaces, An area in an image Where shadow information Is available, it enables
cnriesponds to a suiface in space. Consider the interval accurate measurement of three-space ;,isitinns of nkany ýJ
between pairs of edges along an epipolar line, edges in the scene, from which other .1imensiors can be
corresponding to a slice throuigh the surface. For surfaces inferred. Shadows provide information equivalent to
randomly oriented in space, projected intervals are nearly stereo. Use of shadow information -is an importanti
equal for momt surfaces. Randomly mismatched intervals capability for geometric reccysti'ucion for
correspond to surfaces which are peaked along the lines of photointerpretation. Use of shadows 1'rill be discussed
sights fromn the two viewpoints. Again, the constraint is below.

useful for mapping sequences with wide stereo baseline, [Lowe 81] exploit some of these assumptions in
and very tight for human stereo which is small angle interpreting an aerial photograph of an Qir...raft. Figure la
stereo, shows image curves extracted by hand fromn outp,,t of the

For tuoe.eling expected edge and surface distributions, Nevatia and Babu line finder [Nevatia 7411 This is a cheat
the model of a uniform distribution on the unit sphere which represents a judgment of what line finders Will
(Gaussian sphere) is modified by superimposing a peak produce in a few months. Figure lb showt occlusion cues
along the vei ,dal and a band along the horizontal plane which provide a layered relative depth model, the
for cultural objects and the ground surface. Vertical edgce fuselage is above the wing which is abovu the eagiae pod
in aerial photographs typically appear short; measurcauent which is above the shadow which is on the groun,; the
of their direction is feasiole with sophisticated edge shadow is over a -white line which must be on a smooth
operators. surface. The techniques are quite general, they do not

(Clarkson 81] h•as found a version of the solution to depend at all on knowing the objects in yuesition, and they
the camera transform given only pairs of conjugate image use cues which are u-kiversally available, Figure Ic shows
points without spatial location. The method involves matching of vertices of shadow imnage, coincident with
solution of a 3 parameter problem instead of a five other Junctions along a projection from the svn
parameter problem, thus it presumably requices much less (coincid.ence assumption). Thie system dweermines heights
computation. The solution must be within about .3 of edges which cast shadows from triangalAtion with the
radians in Initial estimates of orientation parameters. The known sun position. Figure l d shows the resulting
objective of this work was to find a solution which is three-space model of the surfacei of the aircraft seen from
more robust than that of Gennery given noise points several views.
(Gennery 79]. This goal has not been achieved yet. There is

much more still to be extracted from these curve data.

Interpretation (Liebes 81] has Ceve)oped a general formulation of

the principles of the perspective geometry of shadow
formation for local and rernote point and extended

New theoretical results outline a theory of sources, and has applied this formulation to a variety of
interpretation of line drawings which promises to include basic geometrical configurations.
curved surfaces with surface markings and shadows, It is proposed to follow this
paper (non-solids), and wires (Binford 811. These results investigation of shadow. to some further results which
appear to have definite application for stereo and appear to be directly ahead.
photointerpretation. There appears to be a rich body of These monocular interpretations are not a substitute
results to be obtained by extending that line of research. for stereo, but they can aid gzastly in stereo
In particular, it is planned to extend the results to stereo correspondence. One problem with stereo systems has been
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that tr- sy don't use shape as humans do axud they don't Use transformations and stereoscopic imagery has yielded
context. There are at least three classes of monocular cues valuable formulations involving projective invariants,
described above: first depth ordering of surfaces from coordinate representations, and stereo edge element
occlusion cues, combined with object -c_0mentation; organi;&ation and unalysis. These formulations have been
second, shape description in terms of generalized applied to projective invariants of CTVs, using the
cylinderst and third, quantitative depth models obtained locations of the vanishing points for their edges, or

from analysis of shadows. Correspondence is enormously equivalently their surface normals. In an application to
simplified if therc, is a qualitative ordering of surfaces, the important special case of nddir-oriented stereo
and simplified more still if there is a quantitative model, cameras, a simple set of projketion and visibility rulei
That is, matching top surfacer with top surfaces, and have been found that uniquely label the corners. Given an
ground surfaces with ground surfaces leaves small search 9TV izk one image, the rules specify the quantitative
spaces, appearance of the corresponding OTV in the con.1-ugate

image, as a function of relative displacement along the
Orthogonal Trihedral Vertices associated epipolar line. The nadir viewing case exten4sOcrectly to oblique viewing configurations.

The simplicity of the rule formulation in nadlir

[Liebes 81] has achieved h number of pieliminary viewing arises from the facts that the vertical edge
results on the use of geometric constraints for special vanishing point coincides with the r.adir point, and both
surfaces in stereo matching for orlhogonal trihedral of the remaining OTV edge vanishing points are oriented
vertices. These provide monocular cues for at right angles to one another at infinite distance parallel
correspondence, to the film plane. In the more general oblique case, all

The objective of determining a depth map z(.x,y) can three vanishing points are at finite distance from one
be aided by symbolic description of portions of the scene, another in the film plane. The rules in the latter
In some porticns of an image, little or no depth c"ircumstance more explicitly utilize the projectiveinformation can be obtained, e.g. on water, snow, relationship of the edges of the sixtee:a different kinds of

concrete, gravel roofs, on uniform metal surfaces, etc. The corners to the vanishing points. Liebes has demonstrated
best information about surface height in such cases can be that elements ot the approach extend to .he case of
obtained by fitting a surface satisfying boundary vertical cylinders with arbitrary polygonal cross se:tion.
conditions with symbolic constraints. A lake is an extreme
case. The condition applies to the height of the water at
the lake boundtaries with the constraint that the water
surface is horizontal. On a horizontal circular cylinder,
the surface has boundary conditions that the positio, at [Arnold 80] Arnold, I.D., Binford, T.O.; "Geometric
the boundaries of visible surface is known and the the Constraints in Stereo Vision" Proc SPIE, San Diego, Cal,
surface tangent is knownt to be along the line of sight. July 1980.
rhus, symbolic constraints provide ways of translating [Binford 8!] T.O.B1nford; "Inferring Surfaces from
familiarity cues into improved measurements. Imag•os"; Artificial Intelligence Journal forthcoming,

The direction of the gravity vector is perhaps the 1 9k 1.
single most important determinant in the alignment of [Brooks 791 Brooks, R.A., Greiner, R., Binford, T.0.;
architectural structures. Walls of buildings and their "ACRONYM: A Model-Bazed Vision System", Proc Int Jt
edges tend to be vertical. Most of the visible area in an Conf on Al, Au1 1979.
aerial photograph of a building is the roof. Roofs are [Brooks 79b] Brooks, R.A.; "Goal-Directed Edge Linking I
usually composed of planar sections, many horizontal. fnd Ribbon Finding"; Proc Image Understanding J
A..chitectural structures contain r-a-y right angles and Workshop, Palo Alto, Cblif, Apr 1979.
orthogonal trihedral vertices, at intersections of walls and [Erooks 80) Brooks, H.A., Binford, T.O.; "Interpretive
roofs of concrete buildings, at door ways, windows, and Vision aad Restriction Graphs", Proc First National AAAI
the like. These elements -re usual|y aligned with gravity. Conference, Stanford, Calif, August 1980.
Pipe lines and large cylindrical structures such a6 storage [Brooks 81] B.A. Brooks; "Model-Based
tanks tend to have their axes either horizontally or The'ea-Dimensional Interpretations of Two-Dimensional
vertically aligned. Images"; Proc Image Understanding Workshop, April

Vertical and horizontal surfaces and edges occur with 1981.
such frequency in cultural object- that it is valuable to [Clarkson 81] K.L. Clarkson; "A Procedure for Camera
work out special case constraints fur these construction Calibration"; Proc Image Understanding WorXshop, April
elements. We intend to address the important special cases 1981.
of plane and cylindrical structural elements, especially [Clowes 71] Clowes,M.B.; "On Seeing Things"; Al
right parallelipipeds and right circular cylinders aligned Journal, 1971.
with gravity, vertical and horizontal surfaces. To ignore [Gennery 7-,b] Gennery, D.B,; "Stereo Camera Solver";
these capaialitles for use of special structures is throw Proc Image Understanding Workshop Nov 1979, USC, Los
away valuable informatinn. Liebos is working to quantify Angeles.
these special structure coustraints. [Henderson 79] R.L.Henderson, W.J.Miller, C.B.Grcsch;

Consider the case of orthogonal trihedral vertices "Autometic Stereo Reconstruciion of Man-Made Targsts";
(OTVs), which appear as internal and external corners of SPIE Proc. Huntsville, Aug 1979.
right parallelipipeds. That approach is based upon the use 'Horn 72] B.K.P.Horn; "The Binford-Horn Edge Finder";
of projwctive invarients. Images of OTVs show projective VIIT Al Memo 285, 1972, revised December 1973.
distortion depending upon their orientation and range Huffman 71] Huffman,D.A.1 "Impossible objects as
relative to the camera. The study of projective zonsen.e sentences", Machine Intelligence 6, 1971.
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[Liebes 81] S.Liebes, Jr.j oGeolmetric tY'nstreinta for Dzcmiaon foret.Olawpstinipili*
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O~rt hogo nal TrihedraJ Vertjce.'* Proc Image Neurophyslology, 40(2):260-283 1977.
Ulndersatnding Workshop, April 1981t. [Nevatia 78] Nevatia, R., K.E.Riabul "Linear Pesturt
[Lowe 80] Lowe, DAL.; "Solving in.- the Parameters of Extraction;" Prac. A)RPA image understanding Workshop,
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Understanding Workshop, Univ of Md. A'prik 1980. [Turner 74] Turner.K.1 NCimputer Perception of '1urvd
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Understanding Workshop, April 198 1. [Ullman 79) S. Ullman; "fThe interpretation of structure
[Mackworth '73] Mackworth, A.K.; "I,,terpreting fram motion"; MIT-AI Memo 476, 1979.
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[Mark 77] D3. Man., T. Poggio; 14j Thenry of Human Stereo Mvcoraw-HUlI, 1975.
Vlsion,ý Al MeraLo 46 ý' MIT, Nov 1977.
[Mvarr 79) D.Ma--r. E.,ildvath; w2heory of Edge
De~oction", Al Memo 513, Al Lab MIT, April 1979.
[Miller 8 1] A Miller, M. Lowry; "General purpose VLSI
Chip With Pwl tolerasnt hardware for Image
processing,; Proc linage Understerdirng Worksho)p, April
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PRXGRESS IN THE USC IMAGEF U1NDERSTANDING PfltGRAM

R. Nevatia and A.A. Sawchuk
Image Processing Institute

University of Southern California
Los Angeles, California 90007

Our goals have been to develop techniques of any synthesis method is highly dependent on the
that have wide utility and to test them on texture itself and the modeling scheme chosen,
problems of image to map correspondence and scene general guidelines for predicting the performance
matching. This pqmr is a summary of our program of various techniques have been developed.
for the last year. Detailed of these projects may
be found in (1-2]. We also hope to use these techniques for

texture classification and image segmentation.
SCENE MATZ14ING Same preliminary experiments employing statistical

feature selection and classification techniques
We h..;-e continued to work on the problems of for discrimination have been undertaken by this

matching two images of a scene, or one image with approach. Another paper included in these
a map, by generating symbolic descriptions from proceedings (5] describes the texture synthesis
each. We have implemented matching techniques results in more detail. Additional detail is
using search as well as relaxation techniques. contained in a forthcoming semi-annual technical
New results using the latter are described in an report [2].
accompanying paper (3]. We feel that our system
can handle complex aerial images, the major OTHER PROJECTS
limitations being due to failures of the
segmentation procedures. We have initiated work We are continuing to make improvements to our
to use the map as a guide) to such segmentation. road finding ard linear feature extraction

prograns. We have incorporated Laplacian-Gaussian
SYBOLIC TEXTURE ANALiSIS masks, suggested by Marr, as an alternative for

low level edge extraction. We have also
4e have a system in highly developed form for implemented techniques of connecting segments to

describing natural textures in terms of their give more continuous boiidaries.
pr imitives and relations among th.-m. 7ae
descriptions consist of the primitive sizes and We are also investigating the use of
repetici,.n patterns if any. A statistical hierarchical gradient relaxation techniques for
analysis of our technique agrees with the matching of 2-D and 3-D shapes. We hope to
experimental results. The descriptions have been present results in a later paper.
tested for texture identification and we are
investigating their use to estimate surface HARDWARE IMPLEM4ENTATION
orientation form texture gradients. This
technique is described in detail in another In continuing work with Hughes Research
a,:companying paper [4]. Laboratories, Malibu, California, we are exploring

architecture and hardware issues in the
TEXTURE SYNTHESIS AND ANALYSIS implementation of image understanding algorithms

by VLSI techniques. The initial part of the study
We have been working on several different has concentrated on three algorithms: a)

statistical techniques for synthesizing natural Nevatia-Babu Line Finder [6]; b) Ohlander-Price
textures. Both gray level and binary textures can Region Segmentor [7]; and c) Laws Texture Analysis
b. synthesized, and ten distinct techniques with System (8]. These three algorithms are all very
various tradeoffs have been explored. The computation intensive and have a broad range of
tradeoff parameters include such factors as applications in image understanding research.
ccmputation time for generation, computation time Common to algorithms a) and c) are extensive
for data collection, memory requirements, and two-dimensional convolutional processing,
quality of simulation. Many commonly occurring especially in the early stages of the algorithm.
natural textures have been adequately simulated This convolutional processing is largely local and
i•sing very simple models, providing potentially is well matched to the nature of VLSI systems, in
great information compression for many %bich interconnections are difficult to implement.
applications. Other textures with macrostructure
and nonstai"ionary characteristics require more More recently, the convolution problem has
extensive computation to synthesize realistic, led to a detailed design for a 5 x 5 pixel
visually pleasing results. Although the success convolution processor based on residue arithmetic.
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The system is called RADIUS (Residue Arithmetic 3. K. Price, "Relaxation Matching Applied to
Digital Image Understanding System). The residue Aerial Images," ARPA Image Understanding Workshop,

arithmetic approach hi9 the advantages of Washington, D.C., April 1981 (these proceedings).

modularity, ease of design, prograinmability, broad
application to many problems, and ease of 4. F. Vilnrotter, R. Nevatia and K. Price,
implementation in many integrated circuit "Symbolic Analysis of Natural Textures," ARPA
technologies with submicron structures. Using Image Understanding Workshop, Washington, D.C.,
residue arithmetic, there are no carries in the April 1981 (these proceedings).
numerical conputation and minimal interconnections
on the chip are required. Very high speed 5. D. Garber and A.A. Sawchuk, "Computational
processing is possible because many of the Models for Tixture Synthesis and Analysis," ARPA
numericý1l operations reduce to table lookups in Image Understanding Workshop, Washington, D.C.,
binary digital RAM's. Special purpose integrated April 1981 (the:.- proceedings)
circuits to perform part of the processing areSbeing fabricated, and the construction of an 6. R. Nevatia and K.R. Babu, "Linear Feature

experimental system is in progress. In addition Extraction," Procnedings of the ARPA Image
to the increased computational speed for Understanding Workshop, Pittsburgh, Pa., November
convolution, the processor has applications in 1978, pp. 73-78.
evaluation of polynomial functions, integer
coefficient transforms, enhancement operations, 7. R. (llan~der, K. Price and R. Reddy, "Picture

and moment calculations. Additional details are Segmentation Using a Recursive Region Splitting
contained in a paper in these proceedings [9]. Method," Computer Graphics and Image Processing,

vol. 8, 1978, pp. 313-333.
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PROGRESS AT THE
ROCHESTER IMAGE UNDERSTANDING PROJECT

J. A. FeldmanK. R. Sloan, Jr.

"'hk University of Rochester
cr.e',l ster , New YorK 14627

1. Technical Contributions 1.2 Comj.uting with Connections

1.1. Parameter Networks and the Hough There is a rapidly growing interest

Transform in problem-scale parallelism, both as a

model of animal brains and as a paradigm

One of the most difficult problems in for VLSI. Work at Rochester has

vision is segmentation. Recent work has concentrated on connectionist models and

shown how to calculate intrinsic images their application to vision. The

(e.g., optical flow, surface orientation, framework is built around computational

occluding contour, and disparity.) These modules, the simplest of which are termed

images are distinctly easier to segment p-units. We have developed their

than the original intensity images. properties and shown how they can be
applied to a variety of problems .[Feldman

The Hough transform idea has been and Ballard, 1980].

developed into a general control
technique. Intrinsic image points are To show how the framework can be

mapped (many to one) into "parameter applied to computational problems in

networks" [Ballard, 1980]. This theory vision, three specific examples have been

explains segmentation in terms of highly developed in some detail. In the first,

parallel cooperative computation among spatially distributed data can be

intrinsic images and a set of parameter associated with a complex concept. The
spaces at different levels of abstraction. second problem is related to eye

movements, 'namely, how the eyes can be

Our work with two-dimensional Hough directed to move to interesting spatial

transform techniques has been reported features and how to avoid "reparsing" the

previously E Ballard, 1979; Sloan and images when those movements occur.

Ballard, 1980]. The most recent Finally, we have considered the shape from

application of these ideas is to the shading problem and shown how a global

problem of detecting the presence and parameter, such as light source position,

orientation of rigid, three-dimensional interacts with the calculation of a

objects (Ballard, 1981; Ballard and spatially distributed pararieter such as

Sabbah, 1981]. surface orientation.

Hough-like techniques involving 1.3 Shape

high-dimensional transform spaces have

prompted a need for Dynamically Quantized A convenient representation for

Spaces. We have recently developed a data blob-like figures in an image consists of

structure, based on the pyramid, which can the orientation, length, and width of a

cover a parameter space with a limited bounding rectangle. One fast algorithm

number of accumulators in such a way that for producing such a bounding rectangle is

fine precision is maintained, where it is based upon a dot product sp, e. The

needed. This data structure has the analysis of the * dot product space

advantage that its resource allocation and representation has been improved to handle

connections are fixed. It differs from certain pathological cases, and 'nas been

the usual pyramid in that the boundaries generalized to accommodate different

of elements in the pyramid are continually criteria for the goodness of the

modified by a hierarchical warping representation [Sloan, 1980].

process. Essentially, each cell tries to

track the mean position of votes in its This simple concept of shape has bpn

part of the space. This estimate of the appl 4 ed to the problem of reconstructing

loual mean is used to define the three-dimensional surfaces from very

boundaries of the cell's position [Sloan, s.parse data. The key idea is to use

1981)
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appropriate shape descriptors to 2. S•st•m! Support
hypothesize a transformation whicii
accounts for the dit'ference in shape 2.1. Hardware
between successive contours. When the
hypothesized transformation is minor, very The Grinnell GMR-26 display device is
"simple-minded surface reconstruction DMA-interfaced to an Eclipse computer, and
techniques are sufficient. When there are has been invaluable as an output device
major differences in shape or position for our experiments. An Optronics
between successive contours, our method Colorsoan C-4100 drum scanner is on site
hallucinates new contours, using the and interfaces to the Vision Eclipse.
hypothesized shape transformation [Sloan
and Hrechanyk, 1981]. Both Eclipse computers are fully

configured and have been running
1.4. Adaptive Operators effectively with our distributed system

software. A VAX 11/f80 (purchased with
non-DoD funds) is operating and has been

Control is a crucial issue in Image integrated into the local network. A new,
Understanding. We have been investigating larger capacity Eclipse has beer; added to
the role of low-level adaptive operators the gateway configuration, giving greater
in both the analysis of aerial images and capacity and reliability. We are
in problem solving. The aerial image work currently installing several additional
is reported on elsewhere in these personal'oomputers and a laser printer.
proceedings [Selfridge and Sloan, 1981].

3.2. Software
In general, problem solvers cannot

hope to create plans that are able to We have been working closely with
fully specify all the details of operation other IU contractors (particularly CMU) to
beforehand and must depend on run-time develop a uniform communication facility
modification of the plan to Insure correct for use in the testbed.
functioning. Fortunately, many primitive
actions are highly stereotyped and can be Local image-processing and graphics
performed by adapting pre-programmed software has been transferred to the VkX,
tactics to the current goal context and in C.
operating environment. The arohitecure
and operation of Adaptive Modules The external representation for PLITS
(Russell, 1981) demonstrates this appronch style messages has been specified, and is
to handlinh the problem of executing a being implemented for transmission of
low-level plan in a menner which uses selff-describing messages. A
multiple, parallel and distributed sources Name-Type-Value (MTV) message is
of knowledge. conceptually an unordered set of triples

consisting of a name, a data-type, and a
1 S Modical Applications value of the given data-type. These

triples are called slots. The external
A system has been built in which format of these messages is used by the

Computer Tomograms of the human abdomen communication subsystems. We make no
are searched as a 3-D image and matched other assumptions about other information
against a detailed geometrical model, of which may be roquired by the communication
the abdomen anatomy. Detected organ subsystem (e.g., headers or checksums)
boudaries serve to construct an instance nor do we require that a message fit
of the model that reflects the actual inside a single physical packet.
anatomy of a particular patient as Logically we model the external format of
revealed by the corresponding image data. a message as a variable length vector of

octets (eight bit bytes) [Low, 1980].
The model-directed approach makes

possible the detection of hard-to-find
organs (e.g., kidneys) based on known
locations of easy-to-find organs (e.g., REFERENCES
spinal column), thus relaxing the problem
of obscured boundaries in noisy data that Ballard, D.H., Generalizing the Hough
tend to hinder data-directed approaches. Transform to Detect Arbitrary Shapes,

TR55, Computer Science Department,
The model is hierarchical, built of University of Rochester, October,

Generalized Cylinders, and is inherently 1979 (a); Pattern Recognition (to
parallel. it captures relational, appear).
structural, and quantitative knowledge
that is represented as both data and Ballard, D.H., Strip Trees: A
procedures [Shmni, 1980]. Hierarchical Representation for

Curves, CACM, (to appear).
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